Presentation
29 September 2017 Interfacial dynamics during lateral epitaxy of one-dimensional (1D) nanocrystals over 2D membranes (Conference Presentation)
Author Affiliations +
Abstract
Interfacing mismatched low-dimensional materials is an important step in development of hybrid and complex heterostructures. At nanoscale size regimes, interfacial bonding strength and strain energy can very well define the structural integrity and physiochemical properties of semiconductor junctions changing fundamental properties such as distribution of electron-hole wave functions, carrier charge density, etc. Here, we present some of our results on structural behavior of 2D membranes and their overgrowth with laterally grown 1D nanocrystals. Based on the surface energy of 2D layered materials, we hypothesize different bonding scenarios between 1D and 2D nanocrystals. Using experimental results such as structural changes at the interfaces as well as electro-optical properties, we identify some of the interfacial forces involved, and discuss their significance in controlling the properties of the heterojunctions. We use the metal-catalyzed Surface-directed Vapor-Liquid-Solid (SVLS) process for the lateral growth of 1D nanocrystals
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Babak Nikoobakht "Interfacial dynamics during lateral epitaxy of one-dimensional (1D) nanocrystals over 2D membranes (Conference Presentation)", Proc. SPIE 10349, Low-Dimensional Materials and Devices 2017, 103490C (29 September 2017); https://doi.org/10.1117/12.2275045
Advertisement
Advertisement
KEYWORDS
Nanocrystals

Epitaxy

Heterojunctions

Electro optics

Gold

Interfaces

Semiconductors

Back to Top