Presentation
9 September 2019 Mode-sorter design using continuous supersymmetric transformation (Conference Presentation)
Author Affiliations +
Abstract
The growing demand for high-capacity optical-transmission technologies sparked the growth of integrated and silicon photonics. Efficient on-chip manipulation of optical signals requires development of high-fidelity Y-junctions, photonic lanterns, mode filters and multiplexers, and interferometers. The concept of supersymmetry (SUSY) originated in the fields of particle physics and enabled treatment for bosons and fermions on equal footing. Supersymmetry has expanded to quantum mechanics, and optics where it can be used, for instance, to design (de)multiplexing arrays of waveguides. To date, the majority of optical applications employed the unbroken SUSY that relates partners supporting the same set of eigenstates with the exception of the fundamental state. We propose a design of a mode sorter made of fully iso-spectral permittivity profiles related by a continuous SUSY transformation in the broken regime. This ensures that the propagation constants of the all the modes to be sorted are preserved along the length of the device. As a result of this global matching of the propagation constants, the SUSY design allows for reduction of the modal cross-talk by two orders of magnitude compared with a standard asymmetric Y-splitter. Moreover, the SUSY mode sorter operates for both transverse-electric and transverse-magnetic light polarization, and it shows low losses and modal cross-talk over a broad wavelength range (1300-1700 nm). Compared with the previous SUSY based modes sorters, our design offers similar performance with an order of magnitude smaller sorter length and can separate modes without losing energy via radiative modes.
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Wiktor T. Walasik, Nitish Chandra, Bikashkali Midya, Liang Feng, and Natalia M. Litchinitser "Mode-sorter design using continuous supersymmetric transformation (Conference Presentation)", Proc. SPIE 11080, Metamaterials, Metadevices, and Metasystems 2019, 110802A (9 September 2019); https://doi.org/10.1117/12.2527703
Advertisement
Advertisement
KEYWORDS
Quantum optics

Bosons

Electronic filtering

Fermions

Integrated optics

Interferometers

Multiplexers

Back to Top