Presentation + Paper
28 February 2020 Supervised machine learning for region assignment of zebrafish brain nuclei based on computational assessment of cell neighborhoods
Author Affiliations +
Abstract
Histological studies provide cellular insights into tissue architecture and have been central to phenotyping and biological discovery. Synchrotron X-ray micro-tomography of tissue, or “X-ray histotomography”, yields three-dimensional reconstruction of fixed and stained specimens without sectioning. These reconstructions permit the computational creation of histology-like sections in any user-defined plane and slice thickness. Furthermore, they provide an exciting new basis for volumetric, computational histological phenotyping at cellular resolution. In this paper, we demonstrate the computational characterization of the zebrafish central nervous system imaged by Synchrotron X-ray micro-CT through the classification of small cellular neighborhood volumes centered at each detected nucleus in a 3D tomographic reconstruction. First, we propose a deep learning-based nucleus detector to detect nuclear centroids. We then develop, train, and test a Convolutional Neural Network architecture for automatic classification of brain nuclei using five different neighborhood sizes, which correspond to 8, 12, 16, 20 and 24 isotropic voxel dimensions respectively. We show that even with small cell neighborhoods, our proposed model is able to characterize brain nuclei into the major tissue regions with a Jaccard score of 74.29% and F1 score of 85.34%. Using our detector and classifier, we obtained very good results for fully segmenting major zebrafish brain regions in the 3D scan through patch wise labeling of cell neighborhoods.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Samarth Gupta, Yuan Xue, Yifu Ding, Daniel Vanselow, Maksim Yakovlev, Damian B. vam Rossum, Sharon X. Huang, and Keith C. Cheng "Supervised machine learning for region assignment of zebrafish brain nuclei based on computational assessment of cell neighborhoods", Proc. SPIE 11317, Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, 113170T (28 February 2020); https://doi.org/10.1117/12.2548896
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Brain

Image segmentation

Tissues

3D modeling

Neuroimaging

3D image processing

Machine learning

Back to Top