Presentation + Paper
29 August 2022 Modeling effects of charge sharing on the response of the FOXSI sounding rockets
Author Affiliations +
Abstract

The Focusing Optics X-ray Solar Imager (FOXSI ) sounding rockets are the first solar-dedicated direct-focusing hard X-ray (HXR) instruments. FOXSI rockets use Wolter-1 style HXR optics and solid state double-sided strip detectors. FOXSI images of solar HXR sources are influenced by the point spread function of the optics, the 2D segmentation of the detector into strip intersections, and noise in the detector readout. For FOXSI-4, new high-resolution optics will cause the instrument angular resolution to be limited by the minimum strip pitch of its CdTe detectors (60 μm).

FOXSI images are also affected by charge sharing in the detector, when one incident photon causes signals in multiple adjacent strips. Charge sharing is more likely the closer a photon is incident to a strip boundary, making it a sub-strip-position-dependent effect. Tests of a FOXSI-3 CdTe detector (with 60 μm strip pitch) at a synchrotron beamline (the Advanced Light Source) have allowed for characterization of charge shared events. This knowledge is used to develop new methods for achieving sub-strip resolution in FOXSI detectors (0.6-3", depending on incident photon position), applicable in the future to the FOXSI-4 detectors (or other similar systems).

To evaluate the performance of these methods, a model has been developed combining the FOXSI-3 optical and detector response, the latter incorporating lab-measured properties of charge sharing in the system. Using this model, generated sources are convolved with the FOXSI-3 system to simulate FOXSI data. A corresponding deconvolution process then extracts a reconstructed source from the simulated data using the new imaging methods, and the original and reconstructed sources can be compared. We show that the reconstructed source approximates the original with higher spatial resolution than that which results from using strip-based position knowledge only. Notably, we demonstrate a new ability to resolve independent sources located only one strip pitch apart.
Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jessie Duncan, P. S. Athiray, Sophie Musset, Juliana Vievering, Shunsaku Nagasawa, Juan Camilo Buitrago Casas, Lindsay Glesener, Tadayuki Takahashi, Shin Watanabe, Yixian Zhang, Steven Christe, Alastair MacDowell, and Sӓm Krucker "Modeling effects of charge sharing on the response of the FOXSI sounding rockets", Proc. SPIE 12191, X-Ray, Optical, and Infrared Detectors for Astronomy X, 121911E (29 August 2022); https://doi.org/10.1117/12.2629443
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Rockets

Spatial resolution

Deconvolution

Point spread functions

Data modeling

Imaging systems

RELATED CONTENT

Calibration of the hard x ray detectors for the FOXSI...
Proceedings of SPIE (August 29 2017)
Thick CZT detectors for spaceborne x-ray astronomy
Proceedings of SPIE (October 21 2004)
MIRAX: a hard x-ray imaging mission
Proceedings of SPIE (March 11 2003)
Design and performance of the HEXIS CZT detector module
Proceedings of SPIE (January 10 2003)
The NeXT Mission
Proceedings of SPIE (July 15 2008)
Position-sensitive CZT detector module
Proceedings of SPIE (July 01 1998)
Continuous hard x-ray imager for astrophysics
Proceedings of SPIE (September 01 1995)

Back to Top