Poster + Presentation + Paper
3 October 2022 Simulation and optimization of nanostructure incorporated CZTS solar cell towards higher performance
Author Affiliations +
Conference Poster
Abstract
Kesterite solar cells require a novel high-research implementation to replace the costlier Copper Indium Gallium Selenide (CIGS) solar cells. This study, attempts to demonstrate the performance improvement of kesterite solar cells using multiple quantum wells (MQWs). A numerical simulation approach using Atlas software from Silvaco is used. Firstly, a baseline model of the best performing Cu2ZnSnS4(CZTS) solar cell Mo/CZTS/CdS/i-ZnO/ITO with 11% power conversion efficiency (PCE) is implemented. Further, to exploit the use of MQWs, Cu2ZnSn(SxSe1-x)4 (CZTSSe) with 40% sulfur content is added as well material in a series of wells while keeping the CZTS as the barrier material. This structural modification facilitates the absorption of lower energy photons by the lower bandgap well material. Further, MQW induced quantized energy levels and higher electric fields help to increase the carrier collection, thereby increasing the solar cell's short circuit current density (Jsc) and overall power conversion efficiency (PCE). A detailed study on the effect of well and barrier thickness on the solar cell performance is done, and a well thickness of 5 nm and a barrier thickness of 10 nm was chosen for further optimization. The number of wells is also optimized to 70, which results in the highest performance of the solar cell. This structural modification and optimization remarkably improved Jsc by 48.76% (rel.) and PCE by 34.72% (rel.) compared to solar cells without nanostructures. Moreover, with an optimized structure, an external quantum efficiency (EQE) of over 95% is achieved with the optimized structure.
Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sudheendra Prabhu, Sushil Kumar Pandey, and Subhananda Chakrabarti "Simulation and optimization of nanostructure incorporated CZTS solar cell towards higher performance", Proc. SPIE 12196, Active Photonic Platforms 2022, 121960H (3 October 2022); https://doi.org/10.1117/12.2634028
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Solar cells

Quantum wells

Performance modeling

Nanostructures

Photons

Solar energy

Absorption

Back to Top