Presentation + Paper
4 October 2023 From design to evaluation of an additively manufactured, lightweight, deployable mirror for Earth observation
Marcell Westsik, James T. Wells, Younes Chahid, Katherine Morris, Maria Milanova, Mat Beardsley, Michael Harris, Lucas Ward, Simon G. Alcock, Ioana-Theodora Nistea, Simone Cottarelli, Samuel Tammas-Williams, Carolyn Atkins
Author Affiliations +
Abstract
Additive manufacturing (AM; 3D Printing) is a process that fabricates objects layer-by-layer, unlocking previously unachievable geometrical freedom in design and manufacture. Its adoption for the manufacture of optical components for nanosats is challenging due to limited understanding of its inherent porosity and outgassing properties; however, AM has plenty of potential for lightweight space-based mirror structures as it enables the use of lattice structures and topology optimisation. AM is particularly relevant to nanosat deployable optics (DO) instrumentation, where a segmented mirror needs to be packed within a limited volume and mass budget. This paper describes the design, analysis, manufacture and metrology of AM mirror petal prototypes for a 6U nanosat DO payload. The objective of the prototypes was to reduce the mass and the part count relative to the conventional design. From the available 33 volumetric lattices including graph, triply periodic minimal surface and stochastic lattices within the AM design software used, two were downselected by using finite element analysis and manufacturability experiments. Prototypes were designed using these lattices, and the geometric and interface requirements of the conventional petal. These were printed, using laser powder bed fusion, in the aluminium alloy AlSi10Mg and post-processed using single point diamond turning. The internal (porosity) and external geometrical properties of the manufactured prototypes were measured using X-ray computed tomography and the optical properties of the reflective surface evaluated using interferometry. By utilising AM, a mass reduction of 44 % and the consolidation of nine parts into one was achieved.
Conference Presentation
(2023) Published by SPIE. Downloading of the abstract is permitted for personal use only.
Marcell Westsik, James T. Wells, Younes Chahid, Katherine Morris, Maria Milanova, Mat Beardsley, Michael Harris, Lucas Ward, Simon G. Alcock, Ioana-Theodora Nistea, Simone Cottarelli, Samuel Tammas-Williams, and Carolyn Atkins "From design to evaluation of an additively manufactured, lightweight, deployable mirror for Earth observation", Proc. SPIE 12677, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV, 1267704 (4 October 2023); https://doi.org/10.1117/12.2677303
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Design and modelling

Prototyping

Optical surfaces

Single point diamond turning

Porosity

Simulations

Mirrors

Back to Top