Paper
15 July 1993 InGaAs detectors for miniature infrared instruments
Timothy N. Krabach, Craig O. Staller, Susan N. Dejewski, Thomas J. Cunningham, Mark Herring, Eric R. Fossum
Author Affiliations +
Proceedings Volume 1874, Infrared and Millimeter-Wave Engineering; (1993) https://doi.org/10.1117/12.148064
Event: OE/LASE'93: Optics, Electro-Optics, and Laser Applications in Scienceand Engineering, 1993, Los Angeles, CA, United States
Abstract
In the past year, there has been substantial impetus for NASA to consider missions that are of relatively low cost as a trade off for a higher new mission launch rate. To maintain low mission cost, these missions will be of short duration and will use smaller launch vehicles (e.g., Pegasus). Consequently, very low volume, very low mass instrument (a.k.a. miniature instrument) payloads will be required. Furthermore, it is anticipated that the number of instruments flown on a particular mission will also be highly constrained; consequently increased instrument capability will also be desired. In the case of infrared instruments, focal planes typically require cooling to ensure high performance of the detectors, especially in the case of spectrometers where high D* is necessary. Since a major portion of an instrument's mass and power budget is consumed by the focal plane cooler, detector technologies that require only modest or no cooling can contribute significantly to the realization of a miniature infrared instrument. InGaAs detectors feature high D*, low dark current, and response not only in the 1 - 3 micrometers SWIR regime, but also in the visible regime as well. The latter feature can extend the versatility of a given spectrometer by enabling greater spectral band response while maintaining focal plane simplicity. In this paper, we discuss the InGaAs detector technology and its potential application in miniature infrared instruments.
© (1993) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Timothy N. Krabach, Craig O. Staller, Susan N. Dejewski, Thomas J. Cunningham, Mark Herring, and Eric R. Fossum "InGaAs detectors for miniature infrared instruments", Proc. SPIE 1874, Infrared and Millimeter-Wave Engineering, (15 July 1993); https://doi.org/10.1117/12.148064
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Indium gallium arsenide

Sensors

Infrared radiation

Infrared sensors

Infrared detectors

Space operations

Short wave infrared radiation

RELATED CONTENT

Infrared photodetector development at Fraunhofer IAF
Proceedings of SPIE (January 31 2014)
Extended wavelength InGaAs SWIR FPAs with high performance
Proceedings of SPIE (September 07 2017)
Al/Sb free InGaAs unipolar barrier infrared detectors
Proceedings of SPIE (May 03 2017)
Mechanical cooler development program for ASTER
Proceedings of SPIE (August 01 1991)

Back to Top