Paper
16 January 2003 Use of thermal cycling to reduce adhesion of OTS coated coated MEMS cantilevers
Author Affiliations +
Proceedings Volume 4980, Reliability, Testing, and Characterization of MEMS/MOEMS II; (2003) https://doi.org/10.1117/12.472731
Event: Micromachining and Microfabrication, 2003, San Jose, CA, United States
Abstract
°Microelectromechanical systems (MEMS) have enormous potential to contribute in diverse fields such as automotive, health care, aerospace, consumer products, and biotechnology, but successful commercial applications of MEMS are still small in number. Reliability of MEMS is a major impediment to the commercialization of laboratory prototypes. Due to the multitude of MEMS applications and the numerous processing and packaging steps, MEMS are exposed to a variety of environmental conditions, making the prediction of operational reliability difficult. In this paper, we investigate the effects of operating temperature on the in-use adhesive failure of electrostatically actuated MEMS microcantilevers coated with octadecyltrichlorosilane (OTS) films. The cantilevers are subjected to repeated temperature cycles and electrostatically actuated at temperatures between 25°C and 300°C in ambient air. The experimental results indicate that temperature cycling of the OTS coated cantilevers in air reduces the sticking probability of the microcantilevers. The sticking probability of OTS coated cantilevers was highest during heating, which decreased during cooling, and was lowest during reheating. Modifications to the OTS release method to increase its yield are also discussed.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shaikh Mubassar Ali and Leslie M. Phinney "Use of thermal cycling to reduce adhesion of OTS coated coated MEMS cantilevers", Proc. SPIE 4980, Reliability, Testing, and Characterization of MEMS/MOEMS II, (16 January 2003); https://doi.org/10.1117/12.472731
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Microelectromechanical systems

Promethium

Silicon

Self-assembled monolayers

Semiconducting wafers

Atomic force microscopy

Reliability

Back to Top