Paper
29 September 2004 Photovoltaic concentration at ultra-high flux
Jeffrey M. Gordon, Eugene A. Katz, Daniel Feuermann, Mahmoud Huleihil
Author Affiliations +
Abstract
Experimental results generated with novel miniature fiber-optic concentrators and commercial tandem III-V concentrator solar cells are reported, including (1) measured power densities up to 10,000 suns, (2) solar cell efficiencies in excess of 30% and (3) totally passive cooling. Mini-dish concentrators (a) generate uniform and individualized cell illumination, (b) allow assembly from readily available elements, and (c) are devoid of chromatic aberration. Measurements include the sensitivity of conversion efficiency to (i) power input, (ii) extreme flux inhomogeneities and (iii) the modified spectrum from fiber-optic concentrators. The weak sensitivity of cell performance to acute non-uniformities in flux map is addressed with a relatively simple model that regards the cell as an effective parallel connection of its uniformly irradiated areal elements. Our findings bode favorably for the feasibility of such concentrator designs at concentration levels as high as thousands of suns.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jeffrey M. Gordon, Eugene A. Katz, Daniel Feuermann, and Mahmoud Huleihil "Photovoltaic concentration at ultra-high flux", Proc. SPIE 5529, Nonimaging Optics and Efficient Illumination Systems, (29 September 2004); https://doi.org/10.1117/12.556681
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Solar concentrators

Sun

Prototyping

Solar cells

Photovoltaics

Fiber optics

Temperature metrology

Back to Top