Paper
17 May 2005 Piezoelectric-based vibration control optimization in nonlinear wood and composite structures
Jia Long Cao, Sabu John, Tom Molyneaux
Author Affiliations +
Abstract
Vibration control has been a subject of engineering research for the past few decades. Recently, the use of smart material-related components for vibration control has become an alternative to traditional vibration control techniques. Vibration control using such components has many advantages such as lighter overall weight and lower cost. They are especially suitable where traditional techniques cannot be applied due to weight and size restrictions. Passive vibration shunt control using piezoelectric ceramics (PZT) and an electrical network has been studied by many researchers both analytically and experimentally. In this paper, the modeling of a passive vibration shunt control on a cantilever beam using a finite element analysis software package -- ANSYS is presented. It is a useful alternative to an experimental approach that is costly as the PZT is useable only once in most instances. The simulation shows that the electrical shunt circuit can remove considerable vibration-based energy when properly tuned. The simulation reveals that the material property of the structure has a significant impact on the effectiveness of the vibration shunt circuit. This is postulated to be because of the mechanical impedance match between the structure and PZT transducer. The method provides a useful mechanism for selecting the material properties of a structure so that its vibration can be effectively absorbed by a piezoelectric vibration shunt network. Also shown in this paper is experimental verification of the computational results. This procedure has the potential for greatly increasing the flexibility in the design of such Mechatronic control devices especially when the mechanical and physical properties of synthetic materials such as polymeric composite materials can be varied to suit the application.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jia Long Cao, Sabu John, and Tom Molyneaux "Piezoelectric-based vibration control optimization in nonlinear wood and composite structures", Proc. SPIE 5764, Smart Structures and Materials 2005: Smart Structures and Integrated Systems, (17 May 2005); https://doi.org/10.1117/12.599465
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Ferroelectric materials

Vibration control

Composites

Transducers

Aluminum

Ceramics

Control systems design

Back to Top