Paper
19 April 2013 Hybrid networking sensing system for structural health monitoring of a concrete cable-stayed bridge
Author Affiliations +
Abstract
The purpose of this study is the remote structural health monitoring to identify the torsional natural frequencies and mode shapes of a concrete cable-stayed bridge using a hybrid networking sensing system. The system consists of one data aggregation unit, which is daisy-chained to one or more sensing nodes. A wireless interface is used between the data aggregation units, whereas a wired interface is used between a data aggregation unit and the sensing nodes. Each sensing node is equipped with high-precision MEMS accelerometers with adjustable sampling frequency from 0.2 Hz to 1.2 kHz. The entire system was installed inside the reinforced concrete box-girder deck of Hwamyung Bridge, which is a cable stayed bridge in Busan, South Korea, to protect the system from the harsh environmental conditions. This deployment makes wireless communication a challenge due to the signal losses and the high levels of attenuation. To address these issues, the concept of hybrid networking system is introduced with the efficient local power distribution technique. The theoretical communication range of Wi-Fi is 100m. However, inside the concrete girder, the peer to peer wireless communication cannot exceed about 20m. The distance is further reduced by the line of sight between the antennas. However, the wired daisy-chained connection between sensing nodes is useful because the data aggregation unit can be placed in the optimal location for transmission. To overcome the limitation of the wireless communication range, we adopt a high-gain antenna that extends the wireless communication distance to 50m. Additional help is given by the multi-hopping data communication protocol. The 4G modem, which allows remote access to the system, is the only component exposed to the external environment.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Marco Torbol, Sehwan Kim, Ting-Chou Chien, and Masanobu Shinozuka "Hybrid networking sensing system for structural health monitoring of a concrete cable-stayed bridge", Proc. SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013, 86920C (19 April 2013); https://doi.org/10.1117/12.2009705
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Bridges

Wireless communications

Structural health monitoring

Sensing systems

Data communications

Antennas

Signal attenuation

Back to Top