Paper
7 August 2014 Gaia downlink data processing
H. Siddiqui, S. G. Els, R. Guerra, N. Cheek, A. Mora, W. O'Mullane
Author Affiliations +
Abstract
The Gaia survey mission, operated by the European Space Agency (ESA) and launched on 19 December 2013, will survey approximately 109 stars or 1% of the galactic stellar population over a 5.5 year period. The main purpose of this mission is micro-arcsecond astrometry, that would yield important insights into the kinematics of the galaxy, its evolution, as well as provide important additional findings, including a updated coordinate reference system to that provided by the ICRS. Gaia performs its observations using two telescopes with fields of view separated by 106.5 degrees, spinning around an orthogonal axis at about 6 hours per day. The spin axis itself precesses: it is always oriented at 45 degrees from the sun, and precesses around the sun every 63 days. Thus each part of the sky is observed approximately every 63 days. The 6-hour spin, or scan-rate matches the CCD readout rate. The amount of data to process per day - 50-130 Gigabytes - corresponds to over 30 million stellar sources. To perform this processing, the Gaia Data Processing and Analysis Consortium (DPAC) have developed approximately 2 million lines of software, divided into subsystems specific to a given functional need, that are run across 6 different Data Processing Centres (DPCs). The final result being a catalog including the 109 stars observed. Most of the daily processing is performed at the DPC in ESAC, Spain (DPCE), which runs 3 main subsystems, the MOC Interface Task (MIT), the Initial Data Treatment (IDT), and First Look (FL). The MIT ingests the initial data provided by the MOC in the form of binary data and writes (amongst other things) `star packets' containing the raw stellar information needed for IDT, which provides a basic level of processing, including stellar positions, photometry, radial velocities, cross match and catalogue updates. FL determines the payload health (e.g, the health for the 106 CCDs, geometric calibration) and astrometric performance via the one day astrometric solution. This presentation provides an overview of the DPAC software as a whole, and focuses on the daily pipeline processing: the systems used, the teams involved, the challenges during development and operations, and lessons learned.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
H. Siddiqui, S. G. Els, R. Guerra, N. Cheek, A. Mora, and W. O'Mullane "Gaia downlink data processing", Proc. SPIE 9149, Observatory Operations: Strategies, Processes, and Systems V, 91492E (7 August 2014); https://doi.org/10.1117/12.2056402
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Space operations

Data processing

Stars

Charge-coupled devices

Data backup

Databases

System on a chip

Back to Top