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Abstract. Brain tissue analysis is highly desired in neurosurgery, such as tumor resection. To guarantee best life
quality afterward, exact navigation within the brain during the surgery is essential. So far, no method has been
established that perfectly fulfills this need. Optical coherence tomography (OCT) is a promising three-dimen-
sional imaging tool to support neurosurgical resections. We perform a preliminary study toward in vivo brain
tumor removal assistance by investigating meningioma, healthy white, and healthy gray matter. For that pur-
pose, we utilized a commercially available OCT device (Thorlabs Callisto) and measured eight samples of men-
ingioma, three samples of healthy white, and two samples of healthy gray matter ex vivo directly after removal.
Structural variations of different tissue types, especially meningioma, can already be seen in the raw OCT
images. Nevertheless, an automated differentiation approach is desired, so that neurosurgical guidance can
be delivered without a-priori knowledge of the surgeon. Therefore, we employ different algorithms to extract
texture features and apply pattern recognition methods for their classification. With these postprocessing
steps, an accuracy of nearly 98% was found. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.

JBO.23.7.071205]
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1 Introduction
For the subsequent recovery of patients after neurosurgical
resection, it is essential to precisely resect the brain tumor
without damaging nearby healthy tissue. For example, previous
studies have demonstrated that the total resection of benign
meningiomas increases the survival rate.1,2 On the other hand,
removal of healthy tissue can cause severe reduction of life
quality afterward. Therefore, it is necessary to find a clear
differentiation between healthy tissue and brain tumor during
the surgery to guarantee complete removal. Prior to the surgery,
the position of the tumor can be determined with magnetic
resonance imaging (MRI) or computed tomography. But during
the resection, this position shifts up to several tens of millimeters
and the shift increases during the procedure, due to removal
of tissue and loss of cerebrospinal fluid.3 At the moment, the
utilized tools to support such surgeries intraoperatively are not
providing sufficient assistance.

Here, we present the possibility to assist neurosurgical pro-
cedures by employing optical coherence tomography (OCT) and
texture feature-based postprocessing, including machine learn-
ing with principal component analysis (PCA) and support vector
machines (SVM). In this study, we confirm that our approach
is suitable for ex vivo analysis. With this approach, we aim
to find a clear differentiation between healthy and tumor tissue

automatically in the future, so that further investigations by
the surgeon are not necessary.

Other imaging modalities, e.g., fluorescence microscopy4

or Raman spectroscopy,5 suffer from several drawbacks, i.e.,
nonuniform distribution and the lack of a three-dimensional
(3-D) field of view. Moreover, fluorescence guided surgery for
meningioma resection does not provide the same benefit as
for malignant glioma surgeries.6 Multiphoton tomography with
fluorescence lifetime imaging has led to promising results.7

Nevertheless, the penetration depth of this modality is quite low,
i.e., approximately 200 μm.7 By utilizing OCT, these challenges
can be overcome. OCT has demonstrated its advantages in
several fields of biomedical imaging, e.g., ophthalmology and
dermatology.8,9

Until now the performance of time and spectral domain OCT
for the analysis of brain tissue has been analyzed by Böhringer
et al.10 They highlighted that detailed structural information can
be seen with spectral domain OCT and due to the increased
image acquisition speed, intraoperative utilization can be poten-
tially enabled. Full field OCT-based investigations were done
by Assayag et al.,11 where nontumorous tissue and different
brain tumors were imaged. Correlations with histology were
clearly visible. In a recent article, the attenuation coefficient
was calculated for the backscattered signal in OCT and used for
the differentiation between healthy tissue and brain tumor.12,13
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The measurements were performed in vivo for mice and ex vivo
for human samples. Lichtenegger et al.14 combined spectro-
scopic imaging together with an attenuation-based approach
in the visible light range for the investigation of Alzheimer’s
disease. For that purpose optically cleared mice samples and
ex vivo, human gray and white matter were analyzed.

These recent works have shown promising approaches for
differentiation. However, automated differentiation has only
been proposed by Kut et al.12,13 But for using an attenuation-
based approach, the methodology has to be adjusted for
every system since some parts of a system might be changed,
e.g., the light source. By considering the texture of an image, the
light source should not influence the result significantly. In our
recent work, we were able to demonstrate that meningioma
samples show differences in structure compared to healthy
tissue.15,16 Now we want to enhance these structural variations
by employing texture analysis. This postprocessing algorithm is
very fast and can be easily implemented in other systems.

The benefit of OCTwith texture analysis on mouse tissue and
phantom samples has already been demonstrated by Gossage
et al.17,18 A powerful metric is local binary patterns (LBP)
that are widely used for face recognition algorithms,19,20 and
whose benefit has also been shown in ophthalmology by Liu
et al.21 and Anantrasirichai et al.22 For meningioma samples,
LBP were employed for histology images taken by a bright
field microscope.23

Furthermore, MRI images of different tumor types and
grades were analyzed using texture analysis and subsequent
classification with SVM.24

In this paper, we employ OCT imaging with a texture
operator based on LBP,19 run length analysis (RL),25 Haralick’s
texture features (H),26 and Laws’ texture energy measures (L)27

on 13 ex vivo brain tissue samples for an automated differentia-
tion approach.

2 Methodology
The sequence of our ex vivo analysis is depicted in Fig. 1. First,
13 samples from 11 patients were directly measured after resec-
tion with OCT and marked with blue ink for orientation. In our
study, we obtained volumetric images for each sample. Each of
these images consists of 1000 B-scans, except two samples,
for which only 500 B-scans could be recorded. The resected

samples were taken from an area, where the surgeon was certain
to find only the tissue of interest. To verify this, a histopatho-
logical analysis was performed, so that each sample could be
labeled as meningioma, healthy white, or healthy gray matter.

The OCT measurements were performed with a commer-
cially available spectral domain OCT system (Thorlabs
Callisto). The central wavelength of the OCT device is 930 nm
and provides axial and lateral resolutions of 7 and 8 μm, respec-
tively. The maximum penetration depth is 1.7 mm in air and
1.2 mm in brain tissue, presuming a refractive index of 1.4.
After the ex vivo measurements, the samples were prepared
for standard histological analysis: they were embedded in
paraffin and then, 10 μm thin slices were cut, stained with hema-
toxylin and eosin and investigated with a bright field micro-
scope. The investigation of stained slices by an experienced
pathologist is a common practice to determine the tissue type
ex vivo. For a few samples, additional OCT images of the par-
affin block and the slices were performed. Afterward, the OCT
images of the slices were compared with the microscopic
images. Using this procedure, we verified that the distinct fea-
tures of every tissue type can be displayed by both imaging
modalities. As these features can be recognized throughout
the complete histological preparation procedure, the postpro-
cessing, as described in Sec. 3, was applied only on the OCT
measurements on unprepared samples directly after the resec-
tion. For later classification, the tissue type for each sample
was diagnosed by an experienced pathologist after the above
described histological preparation procedure. The histopatho-
logical findings were as follows:

• eight meningioma,

• three white matter (healthy tissue), and

• two gray matter (healthy tissue).

To obtain the same lateral resolution for each data set, the
images with better resolution were downsampled by use of
an interpolation. This was necessary because the sample rate
could not be kept constant during the experiments. All post-
processing steps were done using MATLAB (version 2015a).
The libSVM toolbox was used For the SVM.28 The study
was approved by the ethical committee of the Ruhr-University
Bochum.

Fig. 1 Sequence of the ex vivo study.
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3 Analysis
This section deals with the performed analysis that led to an
accurate classification of the tissue. Figure 2 illustrates the post-
processing steps that were performed with our ex vivo OCT
images. At the beginning, we introduce a segmentation algo-
rithm that automatically finds the region of interest for every
B-scan without any need for adjustments of the parameters. Then,
the applied texture feature algorithms are introduced followed
by a description of the PCA and the classification via SVM.

3.1 Segmentation

The flowchart of the segmentation can be seen in Fig. 3. At first,
the noise of the original B-scan was suppressed by using a 20 ×
20 pixel median filter. Afterward the edge was detected using
the Canny operator.29 By thresholding with Otsu’s method,
the lower boundary of the region of interest was found.30 For
further analysis the original image was taken, so that no textural
feature was suppressed by the median filter and divided into
32 × 32 pixel subimages. If at least 90% of a subimage was
lying in the segmented area, it was considered for further analysis.

3.2 Local Binary Patterns

By employing LBP, a histogram can be calculated for every sub-
image. Here, each pixel is compared with its surrounding neigh-
bors and an 8-bit binary value is calculated. Each neighbor has a
predicted binary digit, which is considered as one, if its value is
higher or equal than the center pixel and as zero, if the value
is lower.

Since all surrounding neighbors are considered for every
pixel, this methodology is rotation invariant. Afterward a histo-
gram was calculated for each subimage and then a mean
histogram was calculated for each B-scan of a 3-D data set.
In total, 256 features are calculated with this methodology.

3.3 Run Length Analysis

With RL, areas that have the similar gray level intensities in a
specific direction are emphasized. The run length for each gray
level is stored in a matrix. To calculate the run length matrix, the
subimages have to be quantized into gmax gray levels first. In our
study, gmax was chosen to be 16. For each of these quantized
levels, an entry in the matrix is calculated, which stores the
length of a row of pixels that share the same intensity.

Out of this matrix, several features can be extracted, to high-
light different structural features of the input image. In our study,
these features were extracted for horizontal and vertical runs:

• short run emphasis,

• long run emphasis,

• gray level nonuniformity,

• run length nonuniformity,

• low gray level run emphasis,

• high gray level run emphasis, and

• run percentage.

For the later analysis, the mean parameter for both runs was
calculated, leading to seven extracted features.

3.4 Haralick’s Texture Features

Haralick introduced 14 texture features that are based on a gray
level co-occurrence matrix, which stores the change of a gray
level from 1 pixel to the next.26

Out of this matrix we investigated these features for the
angles 0 deg, 45 deg, 90 deg, and 135 deg:

• contrast,

• entropy,

• inverse difference moment,

• second angular moment, and

• dissimilarity.

All features were calculated for every direction, so that this
methodology is rotation invariant as well. At the end, only the
mean parameter was considered for later analysis, resulting in
five features.

3.5 Laws’ Texture Energy Measures

For this analysis, the image is convolved with different filter
masks that can highlight certain structural features, as proposed
by Laws.27 In our work, we used 5 × 5 masks that were gener-
ated by the outer product (⊗) of these operators:

• level: L5 ¼ ð 1 4 6 4 1 Þ,
• edge: E5 ¼ ð−1 −2 0 2 1 Þ,
• spot: S5 ¼ ð−1 0 2 0 1 Þ,
• wave: W5 ¼ ð−1 2 0 −2 1 Þ, and
• ripple: R5 ¼ ð 1 −4 6 −4 1 Þ.

RL

L

LBPP

Texture 
features
T
ffeattu

H

Segmen-
ta�on

Ex vivo 
OCT 

image
PCA SVM

Fig. 2 Sequence of the postprocessing: LBP, local binary patterns;
RL, run length analysis; H, Haralick’s texture features; and L,
Laws’ texture energy measures.

Fig. 3 Flowchart of the performed analysis.
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Here, the masks E5 ⊗ L5, E5 ⊗ S5, L5 ⊗ S5, and R5 ⊗ R5

were used since it turned out that these masks were best suitable
for Brodatz images, which are common data sets to verify
texture analysis approaches.27 After the convolution with these
masks, a 5 × 5 average filter was applied. Then, the mean value
and the standard deviation were calculated and considered
leading to eight textural features.

3.6 Feature Reduction and Classification

The texture analysis was performed on each subimage.
However, due to the large amount of data, a mean feature vector
was calculated for each B-scan, leading to approximately 1000
data points for each sample. After all texture features were cal-
culated, a PCA was done, so that the dimensionality could be
reduced. As a minimum, the first three principal components
were considered and the number of principal components,
which were taken for classification, was increased until a vari-
ance of at least 95% was reached. PCA was performed on four
different preprocessing options:31

1. The combination of texture features without normali-
zation: xðLBP;RL;H;LÞ.

2. The combination of texture features was combined
using z-score normalization:

EQ-TARGET;temp:intralink-;sec3.6;326;476xz-score ¼
x − μ

σ
:

3. Each data set was normalized by its minimum and
maximum individually, before they were combined:

Fig. 4 (a) B-scan of meningioma, (b) healthy white tissue, and
(c) healthy gray tissue.

Table 1 Comparison between different texture feature classification results.

x (%) xz−score (%) xmin−max (%) xmin−maxðz−scoreÞ (%)

LBP 99.84 98.94 99.77 98.50

RL 92.07 91.87 90.76 89.92

H 93.84 93.28 90.35 76.27

L 97.89 97.19 96.32 95.28

LBP + RL 99.14 99.73 99.87 99.51

LBP + H 99.82 99.25 99.80 98.78

LBP + L 97.93 99.49 99.80 99.40

RL + H 92.05 90.95 88.77 90.24

RL + L 97.75 93.89 96.23 95.89

H + L 97.89 96.56 97.31 96.46

LBP + RL + H 99.17 99.74 99.88 99.58

LBP + RL + L 97.76 99.77 99.82 99.65

LBP + H + L 97.95 99.48 99.79 99.45

RL + H + L 97.75 93.28 97.98 97.71

LBP + RL + H + L 97.76 99.77 99.86 99.66
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EQ-TARGET;temp:intralink-;sec3.6;326;752xmin−max ¼
x −min

max−min
:

4. Each data set was first normalized individually, and
then z-score normalization was performed on the com-
bined feature vector:

EQ-TARGET;temp:intralink-;sec3.6;326;692xmin−maxðz-scoreÞ ¼
xmin−max − μ

σ
:

For the z-score normalization, the combined feature vector
was subtracted with the mean value μ and divided by the stan-
dard deviation σ. At the end, an SVM with a radial basis func-
tion kernel was employed to separate the data into healthy (gray
and white matter) and tumor tissue. A grid search was done to
find the optimal parameters for the width of the kernel γ and the
cost parameter c.32 The radial basis function kernel is described
in this way:33

EQ-TARGET;temp:intralink-;e001;326;567KRBFðx; x 0Þ ¼ expð−γkx − x 0k2Þ: (1)

Moreover, a 10-fold cross validation was performed. For
each tissue type, the data set was split into 10 equal parts.
Then the classification was performed 10 times, while every
time one part was used for testing and the remaining nine
parts were used for training. To get the best classification accu-
racy, every possible combination among the texture features was
tested.

4 Results
The raw B-scans of a meningioma sample, healthy white, and
gray tissue can be seen in Fig. 4. The structural differences are
already visible, but by utilizing different texture features,
a classifier can be trained that provides an accuracy how pre-
cisely the classification was performed.

Table 1 shows the obtained SVM classification accuracies
for any combination of the calculated textural features after
PCA was applied. The best result (99.88%) is obtained for
a combination of LBP, RL, and H. In Fig. 5, the first three
principal components are plotted against each other in two-
dimensional (2-D) and 3-D as well. It can clearly be seen that
there is a huge overlap between the point clouds for meningioma
samples (red) and healthy tissue (blue), which is not desired
because this does not provide robust classifiers.

A more obvious result is depicted in Fig. 6. Here, the com-
bination of RL, H, and L provides a slightly lower accuracy of

Fig. 5 PCA for the best classification accuracy: meningioma samples
are depicted in red and healthy tissue in blue. A 2-D scatter plot was
made for the (a) first principal component (PC1) against PC2, (b) PC1
versus PC3, (c) PC2 versus PC3, and (d) a 3-D scatter plot for all
three components.

Fig. 6 PCA for the most obvious result: meningioma samples are
depicted in red and healthy tissue in blue. A 2-D scatter plot was
made for the (a) first principal component (PC1) against PC2,
(b) PC1 versus PC3, (c) PC2 versus PC3, and (d) a 3-D scatter
plot for all three components.

Fig. 7 2-D plot showing the result of the grid search (a) for the best SVM accuracy and (b) for most
obvious SVM accuracy. The cost parameter c and the width of the kernel γ are displayed in a logarithmic
scale. The area with an accuracy greater than 90% is considerably larger for the most obvious result.
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97.98% (bold in Table 1). This is the highest accuracy found
without an overlap of meningioma and healthy tissue. With
this result, the separation between meningioma and healthy
tissue is far more convincing.

The SVM accuracies for the best and for the most obvious
result are depicted in Figs. 7(a) and 7(b). A grid search was per-
formed to find the optimal parameters for the cost parameter c
and the width of the Gaussian kernel γ. By comparing both
results, it can be seen that the most obvious result provides
a larger area with an accuracy greater than 90%. This gives
a hint that this classifier is indeed more robust.

5 Discussion
With the combination of textural features and a machine learn-
ing algorithm on ex vivo OCT images, a confident classifier was
trained to distinguish between healthy tissue and meningioma.
In contrast to other methodologies, fast 3-D imaging is possible
with high lateral and axial resolutions. Here, we have proven
that structural features of meningioma and healthy tissue differ
and that a trained classifier is able to distinguish between the
tissue types. Though our results clearly show the potential for
brain tissue differentiation with our approach, we are aware of
the fact that 13 samples do not provide an ultimate statistical
significance. Therefore, we will continue our study in the future
to continuously increase the number of patients. If, in future
studies, data from an increased number of patients are available,
the data set can be split into training and testing parts without
considering one patient’s data set for training as well as for
testing.

To generate these results, a mean parameter was calculated
for each B-scan, which affects the actual resolution. However,
during neurosurgical resections, the actual precision is approx-
imately 1.5 mm, even for robot assisted surgeries.34 For the axial
dimension, the penetration depth is around 1.2 mm. For the
lateral dimension, the number of subimages that are considered
for classification can be adjusted. To check how our approach
would respond to less homogeneous samples, i.e., mixtures
between tumorous and healthy tissue, we artificially decreased
the size of the analyzed B-scans to one quarter of its original
value. This leads to a maximum width of 1.25 mm, which is
about the accuracy at which the neurosurgery can be performed.
However, this decrease in B-scan size still provided a classifi-
cation accuracy comparable to a full B-scan. With our approach,
this requirement can still be fulfilled for all three dimensions.
Moreover, we have shown that LBP analysis, since this is a
pixel-wise method, is not capable to fulfill our need. All results,
where LBP was utilized, encountered an overlap of healthy tis-
sue and meningioma. For the most obvious result, LBP was not
considered, leading to a clear differentiation between healthy
tissue and meningioma. This was also the highest accuracy
found by using a combination of RL, H, and L. The A-scan
rate of our system was 1.2 kHz. The time needed to scan an
area of ca. 3.5 × 3.5 mm2 was approximately 15 min, which
is not a real-time acquisition. However, much less acquisition
time may be desired when performing in vivo measurements,
to exclude motion artifacts. In that case, high-speed OCT sys-
tems with scan rates in the MHz range may be used.35 Since our
system was utilized for the ex vivo analysis of brain tissue,
no optimization was made yet, to build an intraoperative system.
The work of El-Haddad et al. gives a nice overview of
already employed systems that were used for intraoperative
measurements.36 Based on one of these approaches, automated

differentiation during surgery can potentially be enabled. Our
study confirms that OCT can enable the differentiation of
brain tissue.

6 Conclusion
This paper introduces a texture-based classification algorithm
that distinguishes between meningioma and healthy brain tissue.
Applying this algorithm on OCT images, differentiation
between the tissue types with nearly 98% accuracy is possible.
As the proposed methodologies are typically fast, the implemen-
tation during surgery could be done easily and is the next logical
step. By increasing the number of patients and performing
in vivo measurements, the classifier can be optimized further
and guidance during surgery will be enabled. In that respect,
it will be important to analyze tumor boundaries and infiltrative
tumors. Thus, we will also analyze samples, where healthy and
tumorous tissues are represented in one image and derive algo-
rithms to determine the tumor boundaries. Moreover, there is a
plan to investigate the differentiation of healthy tissue and other
brain tumor types.
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