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Abstract

Significance: The early detection of dysplasia in patients with Barrett’s esophagus could
improve outcomes by enabling curative intervention; however, dysplasia is often inconspicuous
using conventional white-light endoscopy.

Aim: We sought to determine whether multispectral imaging (MSI) could be applied in
endoscopy to improve detection of dysplasia in the upper gastrointestinal (GI) tract.

Approach: We used a commercial fiberscope to relay imaging data from within the upper GI
tract to a snapshot MSI camera capable of collecting data from nine spectral bands. The system
was deployed in a pilot clinical study of 20 patients (ClinicalTrials.gov NCT03388047) to
capture 727 in vivo image cubes matched with gold-standard diagnosis from histopathology.
We compared the performance of seven learning-based methods for data classification, including
linear discriminant analysis, k-nearest neighbor classification, and a neural network.

Results: Validation of our approach using a Macbeth color chart achieved an image-based
classification accuracy of 96.5%. Although our patient cohort showed significant intra- and
interpatient variance, we were able to resolve disease-specific contributions to the recorded
MSI data. In classification, a combined principal component analysis and k-nearest-neighbor
approach performed best, achieving accuracies of 95.8%, 90.7%, and 76.1%, respectively,
for squamous, non-dysplastic Barrett’s esophagus and neoplasia based on majority decisions
per-image.

Conclusions: MSI shows promise for disease classification in Barrett’s esophagus and merits
further investigation as a tool in high-definition “chip-on-tip” endoscopes.
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1 Introduction

Patients with Barrett’s esophagus1 (BE) undergo routine surveillance using high-resolution
white light endoscopy (HR-WLE) and random biopsies to detect the presence of dysplasia,
which increases the risk of developing esophageal adenocarcinoma.2 Early detection of the pre-
cursor dysplastic lesions, or early-stage cancer, enables curative intervention, increasing the
5-year survival rate from just 15%–25% to 80%.3–5 Unfortunately, these precursor lesions can
be challenging to identify on standard-of-care HR-WLE.6,7

Advanced optical imaging modalities have potential to impact patient care.8 With demand for
endoscopy predicted to rise substantially over the next decade,9 the unmet clinical need for opti-
cal methods with improved diagnostic yield and/or lower cost per procedure is particularly acute.
When light travels through tissue, it is absorbed by endogenous chromophores, such as hemo-
globin, and scattered by endogenous structures, such as cell nuclei.10 Disease-related structural
and biochemical changes in the epithelial layer of the gastrointestinal (GI) tract can alter the
distribution and abundance of these absorbers and scatterers—for example, neovascularization
increasing hemoglobin abundance in the epithelium11—resulting in subtle wavelength-depen-
dent changes in reflected light, which can be measured not only by point-based spectroscopy
methods12 but also by hyperspectral imaging methods that capture spatially resolved ðx; yÞ and
spectral (wavelength, λ) information in a single data set, often using mechanical scanning.13,14

Multispectral imaging (MSI) represents a compromise between the extremes of point-spec-
troscopy and hyperspectral imaging, providing typically up to 10 wavelengths of information,
which can be sufficient to resolve color features, while requiring generally simpler optics and
enabling faster scan times. HR-WLE actually represents a simple case of MSI, where tissue
features are measured in three broad color bands: red (620� 40 nm), green (540� 40 nm), and
blue (470� 40 nm) to replicate the spectral sensitivity of human vision.15 Though this represents
a substantial improvement over monochrome imaging, finer spectral information is lost as the
light is pooled into three broad bands. More recently, narrow band imaging16 was developed
specifically to enhance contrast for vasculature and superficial mucosal morphology, using two
narrow illumination bands (415� 10 and 540� 10 nm). Similarly, blue-light imaging uses
a narrow band of blue light (410� 10 nm) to improve the contrast of vessels and mucosal
pits.17 In combination with data analysis using spectral unmixing algorithms, multispectral and
hyperspectral imaging have been used in a range of biomedical applications to visualize the
vascular pattern and the oxygenation status of blood,18–26 to improve detection of gastric27 and
colorectal lesions,28–30 for intraoperative image guidance,31 to identify residual tumor,32 and
to perform tissue segmentation.33,34

The majority of MSI devices fall into two categories: amplitude-division, where the light
beam is divided into two new beams, and field-division, where the light is filtered or divided
based on its position in the beam.35 With all MSI approaches, a trade-off among spatial, spec-
tral, and temporal resolution must be considered alongside cost, complexity, size, and robust-
ness. Previously reported spectral endoscopy systems generally use amplitude-division,
including multiple bandpass filters,29,36 tunable filters,28,37 laser lines,38–40 or detectors dedi-
cated to separate spectral bands.38,39 These amplitude-division systems are typically bulky,
costly, and more susceptible to misalignment in a clinical environment. Furthermore, they
often require sequential acquisition resulting in slow acquisition rates, unsuitable for real-time
clinical imaging. Several field-division approaches are available, including line-scanning41 and
image mapping spectroscopy.20 Spectrally resolved detector arrays (SRDAs) are a relatively
new addition,18,42,43 exploiting spectral filters deposited directly onto the imaging detector in a
mosaic pattern to achieve a low-cost, compact, and robust device that is well suited to clinical
application.

Here, we sought to determine whether MSI using an SRDA could be applied in endoscopy to
improve detection of dysplasia in the upper GI tract in patients with BE. We created a custom
MSI endoscope and undertook a first-in-human pilot clinical study to acquire in vivo MSI data
from esophageal tissue matched with gold-standard histopathological diagnosis of disease state.
These data were then subjected to machine learning-based classification methods, indicating that
despite substantial intra- and interpatient variations, MSI has the potential to resolve different
esophageal disease states in patients with BE.
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2 Methods

2.1 Snapshot Multispectral Endoscope for In Vivo Clinical Imaging

In the future, SRDAs could be deployed as “chip-on-tip” cameras at the distal end of an endo-
scope, however, such integration requires significant miniaturization of optics and changing a
clinically approved device, which substantially extends the timeline required for first-in-human
testing. Furthermore, the spectral properties of esophageal tissue are not well characterized nor
reliably measured using ex vivo tissue.44 Thus, to facilitate clinical testing, we combined the
SRDA with a CE-marked “babyscope” (PolyScope, PolyDiagnost, Germany), a small fiber-
bundle-based endoscope that can be inserted through the accessory channel of a standard endo-
scope to relay light between external optics and the esophageal lumen. We have previously
shown that SRDAs can be implemented in combination with such an imaging-fiber bundle with-
out reducing resolution, since the resolution of fiberscope-based imaging is limited by the size of
individual fiberlets rather than by the sensor resolution.45 The babyscope system included:
a single fiber to relay illumination from outside the patient and direct it onto the tissue; and
a 10,000-fiberlet imaging bundle to relay diffusely reflected light from the esophageal tissue
to custom external detection optics [Fig. 1(a)]. The 3 mm diameter of this babyscope allowed
it to be introduced through the accessory channel of a therapeutic gastroscope [Fig. 1(b)].
Utilizing this unmodified CE-marked device to relay light between the esophagus and external
optics facilitated clinical application of the spectral endoscope.

At the proximal end of the babyscope, the illumination fiber was coupled to a broadband
supercontinuum light source (SuperK COMPACT, NKT Photonics, United Kingdom), which
provided illumination from 450 to 875 nm (Fig. S1 in the Supplementary Material). The proxi-
mal end of the imaging fiber was imaged and magnified using an objective lens (UPLFLN20x,
Olympus, Japan). The light was split using a 90:10 plate beam splitter (BSN10R, Thorlabs,
Germany) and focused using an achromatic doublet lens (f ¼ 100 mm, ACA254-100-A,
Thorlabs, Germany); 10% of the light was focused onto a red–green–blue (RGB) camera
(Grasshopper 3.0, IDS, Germany) to record reference images and the remaining 90% was
focused onto the SRDA (CMS-V, SILIOS, France) [Fig. 1(c)]. The SRDA consists of nine

Fig. 1 A compact snapshot multispectral endoscope for esophageal imaging. (a) Light from a
broadband supercontinuum light source enters the patient via a single illumination fiber.
Reflected light is returned via a 10,000 fiberlet imaging bundle. (b) The “babyscope” enters the
esophagus via the working channel of a standard of care endoscope. (c) Light is detected by an
SRDA. (d) This includes a 3 × 3mosaic of color filters, eight narrow bands, and one broad band (B)
deposited directly on the sensor pixel. (e) The spectral response of the detection channel of the
multispectral endoscope is shown. (f) Light is delivered to the esophageal lumen via the baby-
scope illumination fiber and diffusely reflected light is collected by the imaging fiber bundle.
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spectral filters deposited as a 3 × 3 super-pixel [Fig. 1(d)] across a complementary metal oxide
semiconductor sensor (NIR Ruby sensor, UI1242LE-NIR, IDS, square pixel size 5.3 μm
matched to spectral filter size). The nine spectral filters comprise eight narrow bands of average
full-width half-maximum 30 nm with center wavelengths 553, 587, 629, 665, 714, 749, 791,
829 nm, along with 1 broad band; 500 to 850 nm [Fig. 1(e)]. The optics were securely housed
inside a light tight enclosure and mounted on an optical breadboard (MB4545/M, Thorlabs,
Germany), which was fixed to a stainless-steel trolley (FW2901-3, Freeway Medical, United
Kingdom) with a footprint of 512 mm × 480 mm, allowing the system to be easily and safely
transported in a busy and often crowded clinical setting.

This distal end of the multispectral endoscope accessed the esophagus via the working
channel of a therapeutic gastroscope, directed by the articulation of the gastroscope to collect
diffuse reflectance images alongside standard-of-care imaging [Fig. 1(f)], thus causing minimal
disruption to clinical workflow.

Endoscope settings were controlled using an interface developed in LabVIEW (National
Instruments) running on a PC and a tablet (Surface Pro, Microsoft). Images captured by the
SRDAwere saved as 8-bit 1280 × 1024-pixel bitmap image files (to enable fast acquisition and
immediate review of the images). These images contain two artifacts: a comb structure due to the
imaging fiber bundle and a mosaic pattern due to the spectral filters of the SRDA [Fig. 2(a)]. For
analysis, these were removed in a process of demosaicing and decombing as described previ-
ously,45 resulting in a 1280 pixel × 1024 pixel × 9 band image cube [Fig. 2(b)] with a spatial
resolution of 240� 20 μm at a working distance of 1 cm. For real-time display, three of the nine
bands were decombed and displayed as a false-RGB image at up to 15 fps. For analysis, columns
of the image cube can be treated as nine-point “per-pixel spectra” [Fig. 2(c)]. As high-dimen-
sional image data would be challenging for an operating clinician to interpret in real-time,
machine-vision techniques can be used to classify per-pixel spectra to produce a tissue map
for endoscopic image guidance [Fig. 2(d)].

2.2 Color Chart Imaging

To test the accuracy of the snapshot multispectral endoscope in a controlled setting with known
reference data, we performed handheld imaging of a Macbeth color chart (ColorChecker Classic
Mini, x-rite) prior to four of the in vivo trials (Fig. 3). The color calibration target consists of
24 squares of painted samples, 18 of which contain colors whose spectral reflectance is intended
to mimic those found in natural objects, and 6 of which are a uniform gray lightness scale.

2.3 First-in-Human Pilot Study of Snapshot Multispectral Endoscopy

The snapshot multispectral endoscope was deployed in a pilot clinical study to acquire in vivo
images. This prospective pilot cohort study was carried out at the Cambridge Clinical Research
Centre, Cambridge University Hospitals, United Kingdom. Eligible patients were adults (at least
18 years old) with a previous diagnosis of BE with an endoscopic length of at least 2 cm if
circumferential (circumferential extent C ≥ 2 according to the Prague classification) or at least

Fig. 2 Data processing for snapshot multispectral endoscopy. (a) Raw collected data contain
comb and mosaic artifacts from the imaging fiber and SRDA, respectively. (b) These are removed
by a demosaicing and decombing algorithm to produce a spectral data cube. (c) For a given pixel
in the image cube, a nine-band per-pixel spectrum can be determined. (d) Using these per-pixel
spectra, machine-learning-based classification algorithms can interpret the image cube to gener-
ate a classification map, thus helping to guide the endoscopist.
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3 cm if not circumferential (maximal extent M ≥ 3 according to the Prague classification).
Exclusion criteria are given in the Supplementary Material. The trial was reviewed by
Cambridgeshire Research Ethics Committee and was approved in March 2018 (18/NW/0134).
The trial was registered at ClinicalTrials.gov (NCT03388047).

2.4 Endoscopic Procedure and Histopathology

The clinical procedure undertaken is summarized in Fig. S2 in the Supplementary Material.
Each procedure was performed by a single experienced endoscopist (MdP).

i. After local anesthesia and/or conscious sedation (midazolam ± fentanyl), the patient was
intubated with HR-WLE (H290Z, Olympus, Japan). After cleaning the esophageal mucosa
using a water jet, the endoscopist thoroughly inspected the mucosal surface of the esopha-
gus. Cautery marks were placed around two regions of interest: one suspicious lesion and
one region of inconspicuous BE as a control. In the absence of suspicious lesions, one or
more random areas within the BE segment were selected depending on the length of the BE.
The HR-WLE video stream was recorded using a recording unit (SMP300, Extron).

ii. The endoscopist inserted the snapshot multispectral endoscope through the working channel
of a therapeutic endoscope (GIF2T240, Olympus, Japan). The use of the therapeutic scope
was required as its accessory channel was sufficiently large (3.7 mm diameter) to allow easy
insertion of the multispectral endoscope (3.0 mm diameter at tip and 2.65 mm along length).
The multispectral endoscope was used to image the regions of interest cautery marked in
step (i). An endoscope cap was not used, as it can easily come into contact with lesions and
induce contact bleeding. For the second half of the trial (trial number 11 onward), an addi-
tional control region of distant squamous tissue was inspected with the multispectral endo-
scope following inspection of the two marked regions.

iii. The multispectral endoscope was withdrawn, and the endoscopist proceeded to an endo-
scopic mucosal resection or biopsy (depending on the endoscopic findings and the level
of suspicion). Control areas received biopsies only. Pathological assessment of biopsies
was performed by an expert GI pathologist with extensive experience in reporting BE-
related neoplasia.46–48 Histopathology was interpreted according to the revised Vienna

Fig. 3 Color chart imaging. (a) A Macbeth color chart was used to validate the multispectral endo-
scope. (b) Handheld imaging of the Macbeth color chart took place prior to four of the in vivo trials.
(c) The mean per-pixel spectra for each color on the Macbeth color chart are distinct, but overlap
within their variation. Shaded region shown is standard deviation/5 for clarity. (d) PCA not only
shows clustering of the per-pixel spectra by color but also shows the overlap of similar colors.
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classification.49 In the case of dysplasia, a second pathologist reviewed the diagnosis to
achieve consensus.

For analysis, the most advanced disease present in each biopsy determined the label for the
region such that three classes of spectra were acquired: (1) normal squamous; (2) nondysplastic
BE (NDBE); and (3) neoplasia (consisting of dysplasia and intramucosal carcinoma).

2.5 Coregistration of Multispectral Images with Diagnosis from
Histopathology

To enable matching of multispectral image data with the diagnosis from histopathology, the HR-
WLE video stream and the video stream from the multispectral endoscope were synchronized
and placed side-by-side for analysis. The HR-WLE video was carefully inspected to extract
frames where the multispectral endoscope was sampling the marked regions of interest that were
biopsied to give gold-standard diagnosis from histopathology. Since the esophageal lumen is
quite featureless on MSI, the frames were identified using the cautery marks and other visible
landmarks in the HR-WLE video stream to estimate the field of view of the multispectral
endoscope. The tip of the multispectral endoscope was visible within the field of view of the
HR-WLE endoscope, which facilitated identification of appropriate multispectral images that
could be related to the gold-standard diagnosis made by histopathology.

2.6 Spectral Data Processing

Briefly, raw images were checked for saturation (pixel values > 250), dark subtracted then
decombed, to account for the structure introduced to the image by the individual fiberlets, and
demosaiced, to separate the nine spectral bands, creating an image cube as outlined previously.45

In the image cube, low signal pixels were removed (max per-pixel spectrum value < 50) as they
are more likely to be affected by noise. Finally, each per-pixel spectrum was divided by a white
light reference spectrum and normalized to the maximum of the per-pixel spectrum, such that the
per-pixel spectra represent max-normalized reflectance. The white reference spectrum was an
average of images captured from a white reflectance standard prior to each procedure to avoid
variations introduced depending on experimental conditions.

For classification, the spatial dimensions were binned into 32 × 32 pixels as a compromise
between retaining spatial information and increasing classification accuracy by reducing noise
(Fig. S3 in the Supplementary Material). This resulted in 40-pixel × 32-pixel × 9-band multi-
spectral image cubes. Each multispectral image cube therefore contains 1280 nine-band spectra.
By averaging these across a region of interest drawn in the center of the image around the center
of the fiber bundle, a mean spectrum was determined for each image (this occurs prior to reflec-
tance normalization such that brighter pixels contribute more to the mean image spectrum). By
averaging the spectra across images of the same tissue type within a given patient, mean “patient
spectra”were determined. These different categories enabled us to test the performance of differ-
ent classification methods on a per-pixel, per-image, or per-patient basis.

To quantify the variance in the data, standard deviations were calculated according to

EQ-TARGET;temp:intralink-;e001;116;209σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0
@
P

9
λ¼1

P
n
i¼1

�
yi;λ − yλ

�
2

n

1
A

vuuut ; (1)

where yi;λ is the reflectance i at band λ, with i ¼ 1∶n, the number of spectra and λ ¼ 1∶9, the
nine bands of the spectrum, and yλ is the mean reflectance in band λ. This was calculated within
each group (e.g., per-patient) and the average over all groups (e.g., all patients) was calculated
using a simple mean. For example, for the standard deviation per-image within-patients

EQ-TARGET;temp:intralink-;e002;116;98σwithin−patient ¼
P

N
p¼1 σp
N

; (2)
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where σp is the standard deviation of all per-image spectra within patient p calculated according
to Eq. (1) and N is the number of patients.

2.7 Classification of Multispectral Image Cubes to Discriminate Tissue
Pathologies

For classification, the multispectral image cubes were randomly split into 80% for training and
20% for testing. Spectra calculated per-pixel and per-image were classified using seven methods
commonly used in spectral data classification.50 Linear discriminant analysis (LDA) classifies
spectra by finding a linear combination of features that maximizes the separation between classes
relative to within-class variance in the feature space. K-nearest neighbor (KNN) algorithms
classify spectra by choosing the most frequent classes of KNN data points in the feature space
(k ¼ 3, 5, and 7 were tested). Both LDA and KNN classifiers were applied using the nine-band
spectrum directly as a nine-element feature vector. While LDA assumes linear decision boun-
daries, the KNN algorithm is nonparametric so makes no assumptions about the shape of the
decision boundaries. LDA also assumes variables are Gaussian distributed. The data were also
projected onto principal component axes using principal component analysis (PCA) and the
weights used for KNN classification. Spectral angle mapping (SAM) calculates the n-dimen-
sional angle between a target spectrum and a reference spectrum; in this case, n ¼ 9. The refer-
ence spectra are the mean spectra per-pathology within the training dataset; thus three spectral
angles are calculated for each target spectrum— θtarget-squamous, θtarget-NDBE, and θtarget-neoplasia. For
a simple-SAM classification, the minimum of these three angles was taken as the predicted class.
Alternatively, the angles were treated as a three-element feature vector and classified using LDA
or KNN.

Finally, a neural network (NN) was used for classification. NNs perform classification by
passing an input vector, in this case a nine-band spectrum, through a series of artificial neurons,
with each neuron outputting some nonlinear function of its inputs with some weight that is
adjusted during training. The output values of the final layer determine the classification.
In contrast to LDA, NN classification does not make assumptions about the distribution of
input data nor the shape of decision boundaries. The NN was implemented using a two-layer
feedforward network, with a sigmoid transfer function in the hidden layer (10 neurons) and a
linear transfer function in the output layer, using the MATLAB (MathWorks) Neural Network
Pattern Recognition app. The 20% testing image cubes were randomly split into 50% for val-
idation and 50% for testing (10% of all image cubes each). In summary, the seven classification
methods compared were LDA, KNN, PCA-KNN, simple-SAM, SAM-LDA, SAM-KNN,
and NN.

Accuracy for per-pixel classification was calculated in three ways: per-pixel accuracy, the
percentage of pixels classified correctly over all pixels; per-image accuracy, the average percent-
age of pixels classified correctly in an image; and majority-pixel-per-image, the percentage of
correctly classified images based on a relative majority decision (plurality) of all pixels within an
image (if there is a tie between two classes, the image was counted as incorrectly classified).
Accuracy for per-image-spectrum was the percentage of correctly classified mean-image-
spectra.

3 Results

3.1 Clinical Study Recruitment

Between May 2018 and December 2019, a total of 20 subjects were recruited to this pilot clinical
trial (Table S1 in Supplementary Material). All patients provided written informed consent. Of
these, one subject was considered unfit for endoscopic procedure due to concomitant acute
comorbidity and one was excluded as the visible lesion was too small for spectral imaging.
Of the 18 subjects that underwent standard-of-care endoscopic procedures, three were excluded
from analysis because of insufficient illumination for spectral imaging using the first prototype
(n ¼ 2) and failure of the standard-of-care recording unit (n ¼ 1).
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The multispectral endoscope was deployed to acquire in vivo esophageal image cubes. The
study design prioritized the collection of image cubes matched to gold-standard diagnosis from
histopathology (Fig. S1 in the Supplementary Material). To do this, cautery marks were made in
two distinct regions of the esophagus, one deemed suspicious and one a control (Fig. S2A in
Supplementary Material). The marked regions were inspected with the multispectral endoscope
(Fig. S2B in the Supplementary Material), then the regions were biopsied (Fig. S2C in the
Supplementary Material) and diagnosed based on the histopathologic analysis of the biopsies
(Fig. S2D in the Supplementary Material).

Data were collected in 15 subjects at 44 distinct regions: 9 regions of squamous tissue, 24
regions of NDBE, and 11 regions of neoplasia. Of the 35 BE tissue regions, 34 were confirmed
with histopathological assessment from 45 collected samples (33 biopsies, 14 endoscopic
mucosal resections). In patient number 12, the control region identified on endoscopy was diag-
nosed as dysplastic by histopathology, so spectra that were incidentally captured from another
region of NDBE were taken as NDBE without confirmation from histopathology. Coregistration
between imaging data and histopathological diagnosis was successful for 30 regions (20 NDBE
and 10 neoplasia), yielding a total of 570 labeled image cubes for analysis, plus an additional
157 image cubes from nine squamous regions (Table 1, Fig. S4 in the Supplementary Material).
The mean exposure time was 200� 50 ms. MSI lengthened the procedure time by <10 min per
trial (data captured for mean of 5.2� 1.5 min per trial).

3.2 Machine Learning Enables Classification of Reference Color Spectra

To validate the performance of the snapshot multispectral endoscope, handheld imaging of a
Macbeth color chart was performed prior to imaging of four patients, resulting in 568 image
cubes totaling 46,459 spectra for per-pixel classification [Figs. 3(a) and 3(b)]. The mean spectra
per-pixel show distinct shapes but with significant overlap [Fig. 3(c)]. For classification, 454
image cubes (36,714 spectra) were used for training and 114 image cubes (9,745 spectra) were
used for testing. Visualization of the training spectra by PCA not only shows clustering by color
but also demonstrates the overlap between classes [Fig. 3(d)]. Despite this overlap, the classi-
fication was possible with 89.5% accuracy on a per-pixel basis (96.1� 11.4% mean ± standard
deviation per-image) and up to 99.1% when taking a majority decision per-image using PCA-
KNN with k ¼ 3 [Fig. 4(a)]. On per-image-spectrum classification basis, the accuracy was
96.5%. As expected, per-pixel classification results for each color show that misclassification
often occurred between similar shades [Fig. 4(b)] and at the edges of the illuminated area, where
noise is more apparent [Fig. 4(c)]. Examples of classified image cubes representing colors from
the middle row of the Macbeth color chart are shown in Fig. 4(c).

3.3 Spectra Show Promising Differences Between Tissue Types Despite
Considerable Intra- and Interpatient Variation

We first evaluated the variance within our data. There is considerable variance among the spectra,
per-pixel [Fig. 5(a)], per-image [Fig. 5(b)], and per-patient [Fig. 5(c)], but the average spectra
across patients show clear differences among different histopathological categories [Fig. 5(d)].
We therefore sought to better understand the nature of the variance in the dataset (Fig. 6). The
variance over all per-patient spectra, and over all per-pixel spectra, increases with progression of
disease (0.213, 0.246, 0.321 for per-patient spectra and 0.459, 0.474, 0.479 for per-pixel spectra
in regions of squamous, NDBE, and neoplasia, respectively). This is likely due to the increasing
heterogeneity of the diseased tissues compared with healthy squamous tissue. Interestingly, the
per-image variance within-patients is largest in NDBE. This might be due to intrapatient hetero-
geneity as multiple distinct regions of NDBE were imaged in four of the patients. It might also
reflect the mosaic of cell types found in NDBE. The overall variance of spectra calculated per-
image is smaller than the overall variance in the per-pixel spectra (0.226 versus 0.459, 0.385
versus 0.474, 0.276 versus 0.479 for squamous, NDBE, and neoplasia, respectively), perhaps
due to noise removal by averaging in the images [Fig. 6(a)]. The same effect can be observed in
PCA plots, where the spectra per-pixel [Fig. 6(b)] cluster less well than the spectral per-image
[Fig. 6(c)]. Spectra per-pixel and spectra per-image cluster by pathology [Figs. 6(b) and 6(c)] and
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Table 1 Summary of the collected image cubes and biopsies for matched regions.

Trial
number

Barrett’s length
(C = circumferential,

M = maximum
extent)/cm

Location/
cm

Location/
o’clock

Initial label
during

endoscopy
Tissue

acquisition

Diagnosis
from

histopathology

Number of
matched
image
cubes

3 C0M2 37 8 Suspicious EMR × 1 NDBE 12

37 4 Control Biopsy × 1 NDBE 11

4 C4M6 36 6 Control Biopsy × 1 NDBE 60

5 C5M7 31 9 Control Biopsy × 1 NDBE 28

6 C11M14 31 9 Control Biopsy × 1 NDBE 6

28 6 Control Biopsy × 1 NDBE 9

7 C11M12 35 9 Control Biopsy × 2 NDBE 8

32 5 Control Biopsy × 2 NDBE 7

8 C6M7 32 12 Control Biopsy × 1 NDBE 32

30 6 Control Biopsy × 1 NDBE 4

9 34 3 Suspicious EMR × 1 IMC 9

C5M7 33 3 Suspicious EMR × 1 IMC 15

30 9 Control Biopsy × 1 NDBE 5

10 C14M14 32 10 Suspicious Biopsy × 2 HGD 8

24 10 Control Biopsy × 1 NDBE 7

11 C2M5 35 12 Suspicious EMR × 1 HGD 8

36 6 Control Biopsy × 1 NDBE 15

12 C2M4 41 6 Suspicious EMR × 1 LGD 30

39 8 Control None NA 5

39 6 Control Biopsy × 1 LGD 3

14 C0M3 36 3 Suspicious Biopsy × 2 NDBE 8

38 3 Control Biopsy ×1 NDBE 7

15 C3M4 35 to 38 9 Suspicious EMR × 4 IMC 11

37 3 Control Biopsy × 1 NDBE 8

16 C0M4 40 11 Suspicious Biopsy × 1 IMC 7

39 3 Control Biopsy × 1 NDBE 4

17 C0M2 37 1 Suspicious Biopsy × 2 NDBE 7

18 C5M7 26 12 Suspicious EMR × 2 HGD 134

25 9 Control Biopsy × 1 NDBE 95

26 3 Suspicious EMR × 1 HGD 7

EMR, endoscopic mucosal resection; HGD, high grade dysplasia; IMC, intramucosal carcinoma; LGD, low
grade dysplasia; NDBE, non-dysplastic Barrett’s esophagus; NR, not reported.
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by patient [Figs. 6(d) and 6(e)], which suggests significant interpatient differences in the dataset,
further supported by the standard deviation calculations [Fig. 6(a)]. The within-patient variance
in per-image spectra is smaller than the total variance (0.180 versus 0.226, 0.227 versus 0.385,
0.192 versus 0.276 for squamous, NDBE, and neoplasia, respectively), suggesting there are
notable interpatient differences, which would make generalizable classification challenging.

3.4 Snapshot Multispectral Endoscopy Shows Promising Accuracy
for In Vivo Tissue Classification

For classification, the patient data were split into training data comprising of 581 multispectral
image cubes (121,600 spectra) and test data comprising of 146 image cubes (31,405 spectra).

Fig. 4 Machine learning enables classification of multispectral images of color chart. (a) Seven clas-
sification approaches were compared for classification of color chart image cubes. The best clas-
sification approachwas PCA-KNN. (b) Per-pixel accuracies are shown as pie charts for each color in
the Macbeth color chart. (c) Example classification maps are shown for 40-pixel × 32-pixel × 9-band
image cubes of the middle color row of the Macbeth color chart. White arrows highlight misclassified
pixels, which often lie close to the edge of the illuminated region. *The dark hole in the center of the
“moderate red” image is a region of specular reflection. **Many of the “orange yellow” pixels are
misclassified but are of a similar shade to the correct “orange yellow” color.

Fig. 5 Spectra show promising differences between tissue types. (a) Per-pixel spectra for a single
image of NDBE in patient 16. (b) All per-image spectra for patient 16. (c) Per-patient spectra for
patient 16 and patient 11 are shown. The shaded region is the standard error from the standard
across per-image spectra. (d) The trial-wide spectra. The shaded region is the standard error from
the standard deviation across per-patient spectra.
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Seven classification methods were compared [Fig. 7(a)]. Despite the substantial aforementioned
variance in the dataset, the classification per-pixel was possible with 74.2% accuracy (71.2�
20.2% mean ± standard deviation per-image), rising to 87.0% accuracy when taking a majority
pixel decision per-image using PCA-KNN with k ¼ 3 [Fig. 7(a)]. Per-image-spectrum classi-
fication increased accuracy to 96.5%. The classification results for each pathology show that
squamous tissue was most reliably classified, whereas neoplasia was most difficult to classify
[Fig. 7(b)]. This is in line with our expectations given the variance described in the dataset, as
well as the familiar clinical challenge of distinguishing neoplasia. Nevertheless, on majority-
pixel-per-image classification, accuracies of 95.8%, 90.7%, and 76.1% were achieved for squ-
amous, NDBE, and neoplasia, respectively, and on per-image-spectrum classification, these rose
to 95.8%, 98.6%, and 95.5%, respectively. Confusion matrices are shown alongside calculated
values of sensitivity, specificity, positive predictive value, and negative predictive value for
neoplasia classification in Fig. S5 and Table S2 in the Supplementary Material.

We then created classification maps representing the three pathologies [Fig. 7(c)] to display
alongside RGB images, composed by assigning bands 3, 2 and 1 to red, green and blue, respec-
tively. For visualization, map pixels whose four nearest-neighbor pixels are all a different class
(to the said pixel) are defined as noise and replaced by the mode class of the four nearest-
neighbor pixels. The maps illustrate how classification data could be presented to an operating
endoscopist in real-time.

Fig. 6 Spectra show considerable variance between patients. (a) The standard deviation is shown
for per-pixel spectra, per-image spectra, and per-patient spectra for each pathology class. (b) PCA
for per-pixel spectra shows clustering by pathology but with considerable overlap. (c) PCA of per-
image spectra shows a more defined clustering per-pathology. Both (d) per-pixel spectra and
(e) per-image spectra show visible clustering by patient, making clear the interpatient hetero-
geneity in the dataset.
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To calculate sensitivity, specificity, positive predictive value, and negative predictive value
for detection of neoplasia in BE, the classification models were retrained for two-way classi-
fication using only NDBE and neoplastic image cubes (Fig. S6 and Table S3 in the Supplemen-
tary Material). For per-pixel classification PCA-KNN with k ¼ 3 achieved 60.7% sensitivity,
88.1% specificity, 71.7% positive predictive value, and 81.8% negative predictive value. In per-
image-spectrum classification, this increased to 97.7% sensitivity, 100% specificity, 100%
positive predictive values, and 98.6% negative predictive value.

4 Discussion

Advanced optical imaging modalities have potential to impact the care of patients with BE,
by enhancing contrast for early lesions that can be treated using minimally invasive endoscopic
therapy. MSI enables both spatial and spectral information to be captured during endoscopy,
which has the potential to achieve this goal by revealing changes in the distribution of optical
absorbers and scatterers between different disease states. Diffusely reflected light collected in
our multispectral endoscope is estimated to penetrate approximately 200� 100 μm into tissue,51

thus sampling the superficial mucosal layers where angiogenesis occurs in disease progression.
We expect new microvessels to form from the pre-existing vascular network in the lamina prop-
ria and infiltrate the epithelium,11 increasing the hemoglobin abundance in the region sampled
by our endoscope. Changes in cell and organelle morphology and arrangement might also
contribute to changes in scattering in the epithelial layers.52,53

To test the potential of MSI, we constructed and tested in a pilot clinical study an SRDA-
based snapshot multispectral endoscope capable of acquiring of nine-band multispectral image
cubes in vivo. The SRDA-based snapshot multispectral endoscope was compatible with the
clinical environment: it was deployed via the working channel of the standard-of-care endo-
scope allowing simultaneous standard-of-care imaging, illumination, articulation, insufflation,

Fig. 7 Snapshot multispectral endoscopy shows promising accuracy for in vivo tissue classifica-
tion. (a) Seven approaches were compared for tissue classification. (b) The best classification
approach was PCA-KNN with k ¼ 3. Per-pixel, majority-pixel-per-image, and per-image-spectrum
accuracies are shown for each pathology. Black sectors represent images where majority pixel
decision could not be reached. (c) Example classification maps of 40-pixel × 32-pixel × 9-band
image cubes are shown for each pathology alongside the matched false-RGB image generated
by assigning bands 2, 3, and broadband to R, G, and B colors, respectively. *Specular reflections
are excluded from the classification and marked as white in the classification maps.

Waterhouse et al.: First-in-human pilot study of snapshot multispectral endoscopy for early detection. . .

Journal of Biomedical Optics 106002-12 October 2021 • Vol. 26(10)

https://doi.org/10.1117/1.JBO.26.10.106002.s01
https://doi.org/10.1117/1.JBO.26.10.106002.s01


and washing capabilities; its deployment lengthened procedure time by <10 min (data captured
for mean of 5.2� 1.5 min per trial); it was compact (512 mm × 480 mm footprint) and mobile,
enabling it to be easily transported between procedure rooms between trials; and it was robust,
allowing it to be used in a clinical setting with minimal realignment needed between trials.

Multispectral image cubes were successfully collected in 15 patients. Following MSI, biop-
sies were collected from the imaged regions, resulting in matched labeling from gold-standard
diagnosis from histopathology. This resulted in the successful acquisition of 727 multispectral
image cubes labeled with histopathological diagnosis from 39 distinct regions within 15 patients.

We found substantial intra- and interpatient variation, which is likely due to the intrinsic
spatial heterogeneity of the disease. In regions with diagnosis of multifocal disease, it is likely
that some acquired image cubes include contributions from both focal neoplasia and the sur-
rounding “sea” of NDBE, which was not possible to mitigate in this study. The challenge
of coregistering small-scale disease heterogeneity with in vivo imaging data has not yet been
solved; as image segmentation becomes more detailed, so the coregistration of the image field
with histopathology becomes more challenging. Careful consideration of these issues should
be made in future studies aiming to use advanced spectral endoscopy methods to aid in BE
surveillance. Additional variance could be attributed to variations in imaging geometry caused
by peristalsis and the position of the lesion, though normalization should mitigate this effect.
Nevertheless, the average spectra across patients showed clear differences between pathologies.

Seven classification methods were trained to classify the data as squamous tissue, NDBE,
or neoplasia. PCA-KNN was found to provide the best performance in our dataset, classifying
pathology with 74.2% accuracy per-pixel (71.2� 20.2% mean ± standard deviation per-
image), with majority pixel decision per-image achieving 87.0% accuracy and per-image-
spectrum classification achieving 96.5% accuracy. Notably, two-way per-image-spectrum
classification of neoplasia was possible with 99.1% accuracy (sensitivity 97.7%, specificity
100%, and negative predictive value 98.6%), which compares favorably with the American
Society for Gastrointestinal Endoscopy Preservation and Incorporation of Valuable Endoscopic
Innovations (PIVI)54 requirements for recommendation in BE surveillance55—per-patient sen-
sitivity of ≥90%, negative predictive value ≥98%, and specificity ≥80% for detecting high-grade
dysplasia or early esophageal adenocarcinoma—and with other emerging optical methods for
endoscopic surveillance of BE.8 If these results are validated with a per-patient analysis in
a larger patient cohort, multispectral endoscopy could be incorporated to clinical practice to
improve the standard-of-care.

While these results are very promising, this first experience of applying an SRDA-based
multispectral endoscope in patients revealed several limitations that will inform future work.
First, our classification algorithms were tested using a random per-image split. Future work with
a larger dataset should employ a per-patient split on a dedicated test set to assess the classifi-
cation performance when dealing with unseen patients, particularly in light of the large inter-
patient variation seen in this trial.

Second, our system was constructed using a commercial SRDA, selected for the even dis-
tribution of spectral bands across the near-infrared window of biological tissue. Though our
findings are promising, the sensor was not optimized for the detection of disease-specific spectral
signatures and the nine-band spectra of NDBE and neoplasia showed significant overlap. The
spectral bands available on the SRDA in future studies could be customized using recently
reported fabrication processes56,57 and tailored to detection of specific disease signatures using
spectral band optimization.58

A third limitation of our multispectral endoscope is the use of an imaging fiber bundle to
carry light to detectors outside the body. Though this afforded us a swift route to clinical trans-
lation, it limits acquisition to 10,000 spatial points per image cube and consequently, images are
of low quality in comparison to the high-definition images captured by standard of care endo-
scopes. In addition, attenuation due to the imaging fiber bundle also decreases sensitivity. This is
worsened by the low sensitivity of the SRDA, partly due to the low quantum efficiency of the
underlying sensor (<60%) and partly due to the low transmission of the deposited spectral filters
(∼40%). For future studies and in the pathway to clinical adoption, the SRDA technology,
customized as discussed above, would be most advantageous as a “chip-on-tip” device at the
distal end of the endoscope, which would immediately overcome these limitations.

Waterhouse et al.: First-in-human pilot study of snapshot multispectral endoscopy for early detection. . .

Journal of Biomedical Optics 106002-13 October 2021 • Vol. 26(10)



In summary, by combining the snapshot multispectral endoscope with machine learning tech-
niques, we demonstrated a 74.2% accuracy per-pixel and 96.5% accuracy per-image for clas-
sifying squamous, NDBE, and neoplasia in a first-in-human trial. The next steps are to expand
this work by testing custom SRDAs tailored to disease-specific spectral signatures. With further
testing, multispectral endoscopy has the potential to improve detection of neoplasia during
surveillance of BE.
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