Paper
13 September 1996 High-performance 0.25-um CMOS technology for fast SRAMs
James D. Hayden, T. F. McNelly, Asanga H. Perera, Jim R. Pfiester, C. K. Subramanian, Matthew A. Thompson
Author Affiliations +
Abstract
A high performance 0.25 micrometers CMOS process has been developed for fast static RAMs. This technology features retrograde wells, shallow trench isolation scalable to a 0.45 micrometers active pitch, surface channel 0.25 micrometers NMOS and PMOS transistors with a 55 angstroms nitrided gate oxide providing drive currents of 630 and 300 (mu) A/micrometers respectively at off-leakages of 10 pA/micrometers , overgated TFTs with an on/off ratio greater than 6(DOT)105, stacked capacitors for improved SER protection, five levels of polysilicon planarized by chemical-mechanical polishing with two self-aligned interpoly contacts, 0.35 micrometers contacts and a 0.625 metal pitch. In this technology, a triple well structure was used for SER protection. High energy retrograde wells were integrated with shallow trench isolation and epi providing excellent interwell isolation for both leakage and latch-up down to n+/p+ spaces of 0.60 micrometers . PMOS transistors were scaled to a physical gate length of 0.1 micrometers while maintaining excellent short channel characteristics. A split word-line bitcell was scaled to 1.425 micrometers X 2.625 micrometers equals 3.74 micrometers 2 using 0.25 micrometers rules. A tungsten interpoly plug was used to connect the PMOS TFT loads to the underlying NMOS latch gates without a parasitic diode or dopant interdiffusion, connecting 3 polysilicon layers with self-aligned isolation from an intervening polysilicon layer used as a local interconnect. With this plug, TFT drive currents were greatly improved, particularly at low voltages and the memory nodes pulled to the fully supply voltage. Functional 0.25 micrometers bitcells were demonstrated and with an LDD resistor it was possible to double the cell stability. Bitcell simulation was used to demonstrate that a 4T bitcell will be stable at 2.5 V but that a word-line boost will be required for 1.8 V operation.
© (1996) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
James D. Hayden, T. F. McNelly, Asanga H. Perera, Jim R. Pfiester, C. K. Subramanian, and Matthew A. Thompson "High-performance 0.25-um CMOS technology for fast SRAMs", Proc. SPIE 2875, Microelectronic Device and Multilevel Interconnection Technology II, (13 September 1996); https://doi.org/10.1117/12.250860
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Transistors

Chemical mechanical planarization

Tungsten

Capacitors

Oxides

Resistors

Diodes

Back to Top