Paper
18 August 1997 Validation and improvements of an algorithm for the determination of hemoglobin oxygenations based on spectral data recorded by a tissue spectrophotometer
Alfons Krug, Manfred D. Kessler
Author Affiliations +
Abstract
The tissue spectrometer EMPHO allows measurements of absolute hemoglobinoxygenation values, noninvasive1y at any hemoglobin-perfused tissue, simply by applying visible light on the surface of theorgans under investigation. The hemoglobin oxygenation-algorithm is based on Kubelka-Munk-Theory fortackling both. absorbance and scattering phenomena. Broad-band tissue spectra ofbackscattered light serves as data basis for the analysis. In this study the algorithm was tested for measurements in highly scatteringmedia, in Intralipid©, where erythrocytes were added step by step. The hemoglobin concentration in the suspension varied from 0.01 to 1.0 [g hb Idl of suspension], which corresponds to the range of hemoglobin concentrations physiologically found in various types of tissue. The oxygenation was changed from 0 % to 100 % by using a hollow-fibre oxygenator. The costly study revealed that the algorithm works with high accuracy at a middlehemoglobin-concentration of 0.3 g/dl. The error of calculation was smaller than 2% of the absolute HbO value. The statistics proved that errors were larger at the highest and lowest values o hemoglobin concentration. It could clearly be shown that the errorcan be minimized to 1 % by application ofnew gold-standard hemoglobin spectra ofO % and 100 % oxygenation. Key words: tissue spectrometry, hemoglobin oxygenation, Kubelka-Munk Theory, light absorbance,light scattering, visible wavelength range.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alfons Krug and Manfred D. Kessler "Validation and improvements of an algorithm for the determination of hemoglobin oxygenations based on spectral data recorded by a tissue spectrophotometer", Proc. SPIE 2979, Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, (18 August 1997); https://doi.org/10.1117/12.280263
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Scattering

Light scattering

Tissue optics

Oxygen

Tissues

Absorption

Capillaries

Back to Top