Paper
6 February 2012 Silicon photonic resonator sensors and devices
Lukas Chrostowski, Samantha Grist, Jonas Flueckiger, Wei Shi, Xu Wang, Eric Ouellet, Han Yun, Mitch Webb, Ben Nie, Zhen Liang, Karen C. Cheung, Shon A. Schmidt, Daniel M. Ratner, Nicolas A. F. Jaeger
Author Affiliations +
Abstract
Silicon photonic resonators, implemented using silicon-on-insulator substrates, are promising for numerous applications. The most commonly studied resonators are ring/racetrack resonators. We have fabricated these and other resonators including disk resonators, waveguide-grating resonators, ring resonator reflectors, contra-directional grating-coupler ring resonators, and racetrack-based multiplexer/demultiplexers. While numerous resonators have been demonstrated for sensing purposes, it remains unclear as to which structures provide the highest sensitivity and best limit of detection; for example, disc resonators and slot-waveguide-based ring resonators have been conjectured to provide an improved limit of detection. Here, we compare various resonators in terms of sensor metrics for label-free bio-sensing in a micro-fluidic environment. We have integrated resonator arrays with PDMS micro-fluidics for real-time detection of biomolecules in experiments such as antigen-antibody binding reaction experiments using Human Factor IX proteins. Numerous resonators are fabricated on the same wafer and experimentally compared. We identify that, while evanescent-field sensors all operate on the principle that the analyte's refractive index shifts the resonant frequency, there are important differences between implementations that lie in the relationship between the optical field overlap with the analyte and the relative contributions of the various loss mechanisms. The chips were fabricated in the context of the CMC-UBC Silicon Nanophotonics Fabrication course and workshop. This yearlong, design-based, graduate training program is offered to students from across Canada and, over the last four years, has attracted participants from nearly every Canadian university involved in photonics research. The course takes students through a full design cycle of a photonic circuit, including theory, modelling, design, and experimentation.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Lukas Chrostowski, Samantha Grist, Jonas Flueckiger, Wei Shi, Xu Wang, Eric Ouellet, Han Yun, Mitch Webb, Ben Nie, Zhen Liang, Karen C. Cheung, Shon A. Schmidt, Daniel M. Ratner, and Nicolas A. F. Jaeger "Silicon photonic resonator sensors and devices", Proc. SPIE 8236, Laser Resonators, Microresonators, and Beam Control XIV, 823620 (6 February 2012); https://doi.org/10.1117/12.916860
Lens.org Logo
CITATIONS
Cited by 62 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Resonators

Sensors

Waveguides

Silicon photonics

Silicon

Water

Absorption

Back to Top