Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Global optimization of the illumination distribution to maximize integrated process window

[+] Author Affiliations
Alan E. Rosenbluth

IBM T.J. Watson Research Ctr.

Nakgeuon Seong

IBM Semiconductor Research and Development Ctr.

Proc. SPIE 6154, Optical Microlithography XIX, 61540H (March 15, 2006); doi:10.1117/12.656950
Text Size: A A A
From Conference Volume 6154

  • Optical Microlithography XIX
  • Donis G. Flagello
  • San Jose, CA | February 19, 2006

abstract

This paper extends our previous work on globally optimizing source shapes for lithography. A key extension is our global optimization against metrics that involve process window through focus. For example, the user can determine the particular source shape which maximizes the area of the ED window (common exposure-defocus window) across all patterns. In nominal terms, integrated process window is a highly nonlinear objective function; for example, ED window is defined in terms of fractional (i.e. percentage or relative) exposure latitude, and dose is proportional to the reciprocal of intensity, which means that when ED window is calculated the source variables appear in both numerator and denominator of a ratio of reciprocals. In addition, exposure and focus latitudes are defined in terms of the common window as bounded by all features, and the determination of which features are gating is a conditional and non-differentiable function of the source variables. Also, the focus integration should only extend to the plane where ED window first closes down to zero; this limit also depends on the variables in a nonlinear way. However, despite these complexities, it proves possible under quite benign approximations to reformulate ED window maximization as a near-linear-programming problem that can be solved globally, in polynomial time. The algorithm can be extended in several ways, e.g. to account for effects like mask linewidth errors (MEF). In some cases MEF-optimized sources can substantially reduce the sensitivity to mask error, and may differ appreciably from sources optimized for individual perturbed masks. Resist effects can be approximated by influence/diffusion kernels operating on the exposing image within the film. The area of an inscribed rectangular process band can be optimized in place of the full ED window. Source pixelation can be structured to account for finite illuminator resolution and constraints on minimum pole size. Multiple exposures can also be handled, and polarization can be selected optimally on a pixel-by-pixel basis.

© (2006) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Citation

Alan E. Rosenbluth and Nakgeuon Seong
"Global optimization of the illumination distribution to maximize integrated process window", Proc. SPIE 6154, Optical Microlithography XIX, 61540H (March 15, 2006); doi:10.1117/12.656950; http://dx.doi.org/10.1117/12.656950


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.