Paper
14 April 2006 Design of an ultrahigh-power multisection tunable laser with a semiconductor optical amplifier
Yaping Zhang, Trevor M. Benson, Christos Christopoulos
Author Affiliations +
Abstract
Widely tunable ultra-high power monolithic multi-section tunable lasers have been a sought after dream for more than two decades. In recent years, tunable lasers have become critical components in the development of the next generation telecommunication networks and systems, due to their unique attributes and flexible functionalities. However, some stringent requirements have been imposed on tunable lasers by telecommunication applications regarding their tuning range, optical output power, side-mode suppression ratio (SMSR), linewidth, chirp, tuning speed, reliability, and so on. In addition, monolithic tunable lasers, requiring a regrowth process, suffer from butt-joint reflections from the regrowth interfaces of these multi-section devices, which have seriously affected their tunability, and greatly reduced their facet output power. Butt-joint reflection losses between active-passive interfaces are therefore the crucial and decisive factors in multi-section tunable laser operation. In this paper, original design ideas and novel approaches to the design of ultra-high power InGaAsP-InP based multi-section widely-tunable lasers are introduced. Simulation results show that the facet output power in the proposed new design can be greatly increased compared with a conventional design. The optimized butt-joint angles and the arrangements of these angles at the active-passive interfaces in a multi-section tunable laser can largely reduce the total adverse interface reflection in the device, and tremendously improve the operation performance of the multi-section tunable laser. Finally, an integrated curved semiconductor optical amplifier design is introduced that would be able to futher increase the total optical output power of the device and reduce the backward optical reflection into the device.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yaping Zhang, Trevor M. Benson, and Christos Christopoulos "Design of an ultrahigh-power multisection tunable laser with a semiconductor optical amplifier", Proc. SPIE 6184, Semiconductor Lasers and Laser Dynamics II, 618404 (14 April 2006); https://doi.org/10.1117/12.659652
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Tunable lasers

Interfaces

Reflectivity

Absorption

Semiconductor optical amplifiers

Telecommunications

Integrated optics

Back to Top