Paper
7 June 2006 Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations
Zhibin Lin, Leonid V. Zhigilei
Author Affiliations +
Abstract
The temperature dependences of the electron heat capacity and the electron-phonon coupling factor are investigated for Au based on the electron density of states obtained from ab initio electronic structure calculations. Thermal excitation of d band electrons leads to a significant (up to an order of magnitude) increase in the electronphonon coupling factor and makes a considerable contribution to the electron heat capacity in the range of electron temperatures typically realized in femtosecond laser material processing applications. Simulations performed with a combined atomistic-continuum method demonstrate that the increase in the strength of the electron-phonon coupling at high electron temperatures leads to a faster lattice heating, generation of stronger thermoelastic stresses, and a significant decrease in the time of the onset of the melting process. The timescale of the melting process predicted in the simulation accounting for the thermal excitation of d band electrons is in excellent agreement with the results of recent time-resolved electron diffraction experiments. A simulation performed with commonly used approximations of a constant electron-phonon coupling factor and a linear temperature dependence of the electron heat capacity, on the other hand, significantly overpredicts the time of the beginning of the melting process, supporting the importance of the electron density of states effects and thermal excitation of lower band electrons for realistic modeling of femtosecond pulse laser processing.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Zhibin Lin and Leonid V. Zhigilei "Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations", Proc. SPIE 6261, High-Power Laser Ablation VI, 62610U (7 June 2006); https://doi.org/10.1117/12.674636
Lens.org Logo
CITATIONS
Cited by 53 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Electrons

Gold

Picosecond phenomena

Optical simulations

Tellurium

Femtosecond phenomena

Pulsed laser operation

Back to Top