Paper
2 October 2006 Ultra-low timing-jitter passively mode-locked fiber lasers for long-distance timing synchronization
F. Ö. Ilday, A,. Winter, J.-W. Kim, J. Chen, P. Schmüser, H. Schlarb, F. X. Kärtner
Author Affiliations +
Proceedings Volume 6389, Active and Passive Optical Components for Communications VI; 63890L (2006) https://doi.org/10.1117/12.687364
Event: Optics East 2006, 2006, Boston, Massachusetts, United States
Abstract
One of the key challenges for the next-generation light sources such as X-FELs is to implement a timing stabilization and distribution system to enable ~ 10 fs synchronization of the different RF and laser sources distributed in such facilities with distances up to a few kilometers. These requirements appear to be beyond the capability of traditional RF distribution systems based on temperature-stabilized coaxial cables. A promising alternative is to use an optical transmission system: A train of pulses generated from a laser with low timing jitter is distributed over length-stabilized fiber links to remote locations. The repetition frequency of the pulse train and its higher harmonics contain the synchronization information. At the remote locations, RF signals are extracted simply by using a photodiode and a suitable bandpass filter to pick the desired harmonic of the laser repetition rate. Passively mode-locked Er-doped fiber lasers provide excellent long-term stability. The laser must have extremely low timing jitter, particularly at high frequencies (>1 kHz). Ultimately, the timing jitter is limited by quantum fluctuations in the number of photons making up the pulse and the incoherent photons added in the cavity due to spontaneous emission. The amplitude and phase noise of a home-built laser, generating 100-fs, 1-nJ pulses, was characterized. The measured phase noise (timing jitter) is sub-10 fs, from 1 kHz to Nyquist frequency. In addition to synchronization of accelerators, the ultra-low timing jitter pulse source can find applications in next-generation telecommunication systems.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
F. Ö. Ilday, A,. Winter, J.-W. Kim, J. Chen, P. Schmüser, H. Schlarb, and F. X. Kärtner "Ultra-low timing-jitter passively mode-locked fiber lasers for long-distance timing synchronization", Proc. SPIE 6389, Active and Passive Optical Components for Communications VI, 63890L (2 October 2006); https://doi.org/10.1117/12.687364
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fiber lasers

Mode locking

Oscillators

Phase measurement

Pulsed laser operation

Dispersion

Laser stabilization

RELATED CONTENT


Back to Top