Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Photoacoustic imaging using array transducer

[+] Author Affiliations
Suhyun Park, Srivalleesha Mallidi, Andrei B. Karpiouk, Salavat Aglyamov, Stanislav Y. Emelianov

Univ. of Texas/Austin

Proc. SPIE 6437, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 643714 (February 13, 2007); doi:10.1117/12.704240
Text Size: A A A
From Conference Volume 6437

  • Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics
  • Alexander A. Oraevsky; Lihong V. Wang
  • San Jose, CA | January 20, 2007

abstract

To perform ultrasound imaging using an array transducer, a focused ultrasound beam is transmitted in a particular direction within the tissue and the received backscattered ultrasound wave is then dynamically focused at every position along the beam. The ultrasound beam is scanned over the desired region to form an image. The photoacoustic imaging, however, is distinct from conventional ultrasound imaging. In photoacoustic imaging the acoustic transients are generated simultaneously in the entire volume of the irradiated tissue - no transmit focusing is possible due to light scattering in the tissue. The photoacoustic waves are then recorded on every element of the ultrasound transducer array at once and processed to form an image. Therefore, compared to ultrasound imaging, photoacoustic imaging can utilize dynamic receive focusing only. In this paper, we describe the image formation algorithms of the array-based photoacoustic and ultrasound imaging system and present methods to improve the quality of photoacoustic images. To evaluate the performance of photoacoustic imaging using an array transducer, numerical simulations and phantom experiments were performed. First, to evaluate spatial resolution, a point source was imaged using a combined ultrasound and photoacoustic imaging system. Next, image quality was assessed by imaging tissue imaging phantoms containing a circular inclusion. Finally, the photoacoustic and ultrasound images from the combined imaging system were analyzed.

© (2007) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Citation

Suhyun Park ; Srivalleesha Mallidi ; Andrei B. Karpiouk ; Salavat Aglyamov and Stanislav Y. Emelianov
"Photoacoustic imaging using array transducer", Proc. SPIE 6437, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 643714 (February 13, 2007); doi:10.1117/12.704240; http://dx.doi.org/10.1117/12.704240


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.