Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Self-phase modulation and two-photon absorption imaging of cells and active neurons

[+] Author Affiliations
Martin C. Fischer, Ivan R. Piletic, Tong Ye, Warren S. Warren

Duke Univ.

Henry Liu

Princeton Univ.

Ryohei Yasuda

Duke Univ. Medical Ctr.

Proc. SPIE 6442, Multiphoton Microscopy in the Biomedical Sciences VII, 64421J (February 12, 2007); doi:10.1117/12.698693
Text Size: A A A
From Conference Volume 6442

  • Multiphoton Microscopy in the Biomedical Sciences VII
  • Ammasi Periasamy; Peter T. C. So
  • San Jose, CA | January 20, 2007

abstract

Even though multi-photon fluorescence microscopy offers higher resolution and better penetration depth than traditional fluorescence microscopy, its use is restricted to the detection of molecules that fluoresce. Two-photon absorption (TPA) imaging can provide contrast in non-fluorescent molecules while retaining the high resolution and sectioning capabilities of nonlinear imaging modalities. In the long-wavelength water window, tissue TPA is dominated by the endogenous molecules melanin and hemoglobin with an almost complete absence of endogenous two-photon fluorescence. A complementary nonlinear contrast mechanism is self-phase modulation (SPM), which can provide intrinsic signatures that can depend on local tissue anisotropy, chemical environment, or other structural properties. We have developed a spectral hole refilling measurement technique for TPA and SPM measurements using shaped ultrafast laser pulses. Here we report on a microscopy setup to simultaneously acquire 3D, high-resolution TPA and SPM images. We have acquired data in mounted B16 melanoma cells with very modest laser power levels. We will also discuss the possible application of this measurement technique to neuronal imaging. Since SPM is sensitive to material structure we can expect SPM properties of neurons to change during neuronal firing. Using our hole-refilling technique we have now demonstrated strong novel intrinsic nonlinear signatures of neuronal activation in a hippocampal brain slice. The observed changes in nonlinear signal upon collective activation were up to factors of two, unlike other intrinsic optical signal changes on the percent level. These results show that TPA and SPM imaging can provide important novel functional contrast in tissue using very modest power levels suitable for in vivo applications.

© (2007) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Citation

Martin C. Fischer ; Henry Liu ; Ivan R. Piletic ; Tong Ye ; Ryohei Yasuda, et al.
"Self-phase modulation and two-photon absorption imaging of cells and active neurons", Proc. SPIE 6442, Multiphoton Microscopy in the Biomedical Sciences VII, 64421J (February 12, 2007); doi:10.1117/12.698693; http://dx.doi.org/10.1117/12.698693


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement

 

 

 

  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.