Paper
28 March 2007 Gated cone-beam CT imaging of the thorax: a reconstruction study
Simon Rit, David Sarrut, Serge Miguet
Author Affiliations +
Abstract
In radiotherapy, the respiratory motion of the patient in treatment position is determined from gated cone-beam CT images. This method consists in selecting projections according to a respiratory signal for the reconstruction of a CT image of each respiratory state. This selection can be based on the amplitude or the phase of the signal. The number of selected projections also depends on the width of the gating window. The present study compares different reconstructions using a dynamic digital phantom of the thorax and a known respiratory signal. We applied both regular and irregular motions to this phantom and reconstructed the exhale state using different widths. We evaluated these reconstructions with the signal-to-noise ratio, the contrast-to-noise ratio and a blur criterion. In the case of a regular motion, there was no difference between the amplitude and the phase. The signal quality was high, even for the smallest width, and the blur increased with width. In the case of an irregular motion, the difference was noticeable. Amplitude-based reconstructions suffered from severe artifacts with the smallest width because there were respiratory cycles for which no projection was selected. This drawback is overcome by increasing the width of the gating window. Phase-based reconstructions also allowed to avoid artifacts, whatever the width. But the blur was higher, even for the smallest width applied. These results suggest that the gating process must be adjusted in order to select at least one projection per respiratory cycle. Phase gating is a robust way to achieve this goal when respiration is irregular. Amplitude gating may be more effective in terms of blur, but the width must be carefully chosen to avoid severe artifacts. Finally, we observed the potential of dynamic reconstruction by using a motion model to deform different gated CT images toward a common reference and compute the weighted mean. The resulting CT image suffered less from artifacts than each gated CT image separately even if artifacts were still visible.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Simon Rit, David Sarrut, and Serge Miguet "Gated cone-beam CT imaging of the thorax: a reconstruction study", Proc. SPIE 6510, Medical Imaging 2007: Physics of Medical Imaging, 651022 (28 March 2007); https://doi.org/10.1117/12.707623
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Computed tomography

Signal to noise ratio

Gated imaging

Motion models

Radiotherapy

Signal processing

Tumors

RELATED CONTENT


Back to Top