Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Phase ambiguity solution with the Pyramid Phasing Sensor

[+] Author Affiliations
E. Pinna, S. Esposito, A. Puglisi, F. Pieralli, L. Busoni, A. Tozzi, P. Stefanini

Osservatorio Astrofisico di Arcetri (Italy)

R. M. Myers

Univ. of Durham (United Kingdom)

Proc. SPIE 6267, Ground-based and Airborne Telescopes, 62672Y (June 23, 2006); doi:10.1117/12.671492
Text Size: A A A
From Conference Volume 6267

  • Ground-based and Airborne Telescopes
  • Larry M. Stepp
  • Orlando, Florida , USA | May 24, 2006

abstract

In the technological development for the ELTs, one of the key activities is the phasing and alignment of the primary mirror segments. To achieve the phasing accuracy of a small fraction of the wavelength, an optical sensor is required. In 2005 has been demonstrated that the Pyramid Wavefront Sensor can be employed in closed loop to correct simultaneously piston, tip and tilt errors of segmented mirror. The Pyramid Phasing Sensor (PYPS) is based on the sensing of phase step on the segment edges; this kind of phasing sensors have the common limitation of the signal ambiguity induced by the phase periodicity of πδ/λ on the mirror surface step δ, when the wavelength λ is used for the sensing. In this paper we briefly describe three different techniques that allow to solve the phase ambiguity with PYPS. As first we present experimental results on the two wavelengths closed loop procedure proposed by Esposito in 2001; in the laboratory test the multi-wavelength procedure allowed to exceed the sensor capture range of ±λ/2 and simultaneously retrieve the differential piston of the 32 mirror segments starting from random positions in a 3.2 λ wavefront range, the maximum allowed by the mirror stroke. Then we propose two new techniques based respectively on the segment and wavelength sweep. The Segment Sweep Technique (SST) has been successfully applied during the experimental tests of PYPS at the William Herschel Telescope, when 13 segments of the NAOMI DM has been phased starting from a random position in a 15λ range. The Wavelength Sweep Technique (WST) has been subject of preliminary tests in the Arcetri laboratories in order to prove the concept. Each technique has different capture range, accuracy and operation time, so that each can solve different tasks required to an optical phasing sensor in the ELT application. More in detail the WST and SST could be used combined for the first mirror phasing when the calibration required for the closed loop operations are not yet available. Then the closed loop capture range can be extended from ±λ/2 to ±10λ with the multi-wavelength closed loop technique.

© (2006) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Citation

E. Pinna ; S. Esposito ; A. Puglisi ; F. Pieralli ; R. M. Myers, et al.
"Phase ambiguity solution with the Pyramid Phasing Sensor", Proc. SPIE 6267, Ground-based and Airborne Telescopes, 62672Y (June 23, 2006); doi:10.1117/12.671492; http://dx.doi.org/10.1117/12.671492


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.