Paper
6 July 2006 SuperCam: a 64-pixel heterodyne imaging array for the 870-micron atmospheric window
Christopher Groppi, Christopher Walker, Craig Kulesa, Patrick Pütz, Dathon Golish, Paul Gensheimer, Abigail Hedden, Shane Bussmann, Sander Weinreb, Tom Kuiper, Jacob Kooi, Glenn Jones, Joseph Bardin, Hamdi Mani, Arthur Lichtenberger, Gopal Narayanan
Author Affiliations +
Abstract
We report on the development of SuperCam, a 64 pixel, superheterodyne camera designed for operation in the astrophysically important 870 μm atmospheric window. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. The advent of such a system will provide an order of magnitude increase in mapping speed over what is now available and revolutionize how observational astronomy is performed in this important wavelength regime. Unlike the situation with bolometric detectors, heterodyne receiver systems are coherent, retaining information about both the amplitude and phase of the incident photon stream. From this information a high resolution spectrum of the incident light can be obtained without multiplexing. SuperCam will be constructed by stacking eight, 1×8 rows of fixed tuned, SIS mixers. The IF output of each mixer will be connected to a low-noise, broadband MMIC amplifier integrated into the mixer block. The instantaneous IF bandwidth of each pixel will be ~2 GHz, with a center frequency of 5 GHz. A spectrum of the central 500 MHz of each IF band will be provided by the array spectrometer. Local oscillator power is provided by a frequency multiplier whose output is divided between the pixels by using a matrix of waveguide power dividers. The mixer array will be cooled to 4K by a closed-cycle refrigeration system. SuperCam will reside at the Cassegrain focus of the 10m Heinrich Hertz telescope (HHT). A prototype single row of the array will be tested on the HHT in 2006, with the first engineering run of the full array in late 2007. The array is designed and constructed so that it may be readily scaled to higher frequencies.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Christopher Groppi, Christopher Walker, Craig Kulesa, Patrick Pütz, Dathon Golish, Paul Gensheimer, Abigail Hedden, Shane Bussmann, Sander Weinreb, Tom Kuiper, Jacob Kooi, Glenn Jones, Joseph Bardin, Hamdi Mani, Arthur Lichtenberger, and Gopal Narayanan "SuperCam: a 64-pixel heterodyne imaging array for the 870-micron atmospheric window", Proc. SPIE 6275, Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, 62750O (6 July 2006); https://doi.org/10.1117/12.671856
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Clouds

Stars

Galactic astronomy

Amplifiers

Carbon monoxide

Spectroscopy

Waveguides

RELATED CONTENT

Forecast for HEAT on Dome A, Antarctica the High...
Proceedings of SPIE (September 28 2004)
SuperCam: a 64 pixel heterodyne imaging spectrometer
Proceedings of SPIE (July 18 2008)
Future prospects for THz spectroscopy
Proceedings of SPIE (July 19 2008)
ZEUS: the redshift (z) and early Universe spectrometer
Proceedings of SPIE (October 08 2004)

Back to Top