Paper
23 February 2009 Measurements and analysis in imaging for biomedical applications
Author Affiliations +
Abstract
A Total Quality Management (TQM) approach can be used to analyze data from biomedical optical and imaging platforms of tissues. A shift from individuals to teams, partnerships, and total participation are necessary from health care groups for improved prognostics using measurement analysis. Proprietary measurement analysis software is available for calibrated, pixel-to-pixel measurements of angles and distances in digital images. Feature size, count, and color are determinable on an absolute and comparative basis. Although changes in images of histomics are based on complex and numerous factors, the variation of changes in imaging analysis to correlations of time, extent, and progression of illness can be derived. Statistical methods are preferred. Applications of the proprietary measurement software are available for any imaging platform. Quantification of results provides improved categorization of illness towards better health. As health care practitioners try to use quantified measurement data for patient diagnosis, the techniques reported can be used to track and isolate causes better. Comparisons, norms, and trends are available from processing of measurement data which is obtained easily and quickly from Scientific Software and methods. Example results for the class actions of Preventative and Corrective Care in Ophthalmology and Dermatology, respectively, are provided. Improved and quantified diagnosis can lead to better health and lower costs associated with health care. Systems support improvements towards Lean and Six Sigma affecting all branches of biology and medicine. As an example for use of statistics, the major types of variation involving a study of Bone Mineral Density (BMD) are examined. Typically, special causes in medicine relate to illness and activities; whereas, common causes are known to be associated with gender, race, size, and genetic make-up. Such a strategy of Continuous Process Improvement (CPI) involves comparison of patient results to baseline data using F-statistics. Self-parings over time are also useful. Special and common causes are identified apart from aging in applying the statistical methods. In the future, implementation of imaging measurement methods by research staff, doctors, and concerned patient partners result in improved health diagnosis, reporting, and cause determination. The long-term prospects for quantified measurements are better quality in imaging analysis with applications of higher utility for heath care providers.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Timothy L. Hoeller "Measurements and analysis in imaging for biomedical applications", Proc. SPIE 7182, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII, 71821K (23 February 2009); https://doi.org/10.1117/12.808051
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Skin

Medicine

Statistical analysis

Bone

Analytical research

X-rays

Biomedical optics

Back to Top