Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Dynamic and data-driven classification for polarimetric SAR images

[+] Author Affiliations
S. Uhlmann, S. Kiranyaz, M. Gabbouj

Tampere Univ. of Technology (Finland)

T. Ince

Izmir Univ. of Economics (Turkey)

Proc. SPIE 8180, Image and Signal Processing for Remote Sensing XVII, 81800W (October 26, 2011); doi:10.1117/12.897912
Text Size: A A A
From Conference Volume 8180

  • Image and Signal Processing for Remote Sensing XVII
  • Lorenzo Bruzzone
  • Prague, Czech Republic | September 19, 2011

abstract

In this paper, we introduce dynamic and scalable Synthetic Aperture Radar (SAR) terrain classification based on the Collective Network of Binary Classifiers (CNBC). The CNBC framework is primarily adapted to maximize the SAR classification accuracy on dynamically varying databases where variations do occur in any time in terms of (new) images, classes, features and users' relevance feedback. Whenever a "change" occurs, the CNBC dynamically and "optimally" adapts itself to the change by means of its topology and the underlying evolutionary method MD PSO. Thanks to its "Divide and Conquer" type approach, the CNBC can also support varying and large set of (PolSAR) features among which it optimally selects, weighs and fuses the most discriminative ones for a particular class. Each SAR terrain class is discriminated by a dedicated Network of Binary Classifiers (NBC), which encapsulates a set of evolutionary Binary Classifiers (BCs) discriminating the class with a distinctive feature set. Moreover, with each incremental evolution session, new classes/features can be introduced which signals the CNBC to create new corresponding NBCs and BCs within to adapt and scale dynamically to the change. This can in turn be a significant advantage when the current CNBC is used to classify multiple SAR images with similar terrain classes since no or only minimal (incremental) evolution sessions are needed to adapt it to a new classification problem while using the previously acquired knowledge. We demonstrate our proposed classification approach over several medium and highresolution NASA/JPL AIRSAR images applying various polarimetric decompositions. We evaluate and compare the computational complexity and classification accuracy against static Neural Network classifiers. As CNBC classification accuracy can compete and even surpass them, the computational complexity of CNBC is significantly lower as the CNBC body supports high parallelization making it applicable to grid/cloud computing.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

S. Uhlmann ; S. Kiranyaz ; T. Ince and M. Gabbouj
"Dynamic and data-driven classification for polarimetric SAR images", Proc. SPIE 8180, Image and Signal Processing for Remote Sensing XVII, 81800W (October 26, 2011); doi:10.1117/12.897912; http://dx.doi.org/10.1117/12.897912


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.