Paper
2 February 2012 Sensitivity analysis of near-infrared functional lymphatic imaging
Author Affiliations +
Abstract
Background - Near-infrared (NIR) imaging of lymphatic drainage of injected indocyanine green (ICG) has emerged as a new technology for clinical imaging of lymphatic architecture and quantification of vessel function, offering better spatial and temporal resolution than competing imaging modalities. While NIR lymphatic imaging has begun to be reported in the literature, the technology is still in its infancy and its imaging capabilities have yet to be quantitatively characterized. The objective of this study, therefore, was to characterize the parameters of NIR lymphatic imaging to quantify its capabilities as a diagnostic tool for evaluating lymphatic disease. Methods - An NIR imaging system was developed using a laser diode for excitation, ICG as a fluorescent agent, and a CCD camera to detect emission. A tissue phantom with mock lymphatic vessels of known depths and diameters was used as an alternative to in vivo lymphatic vessels due to the greater degree of control with the phantom. Results and Conclusions - When dissolved in an albumin physiological salt solution (APSS) to mimic interstitial fluid, ICG experiences shifts in the excitation/emission wavelengths such that it is maximally excited at 805nm and produces peak fluorescence at 840nm. Premixing ICG with albumin induces greater fluorescence intensity, with the ideal concentration being: 900μM (60g/L) albumin and 193.5μM (150μg/mL) ICG. ICG fluorescence can be detected as deep as 6mm, but spatial resolution deteriorates severely below 3mm, thus skewing vessel geometry measurements. ICG packet travel, a common measure of lymphatic transport, can be detected as deep as 5mm.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Michael Weiler, Timothy Kassis, and J. Brandon Dixon "Sensitivity analysis of near-infrared functional lymphatic imaging", Proc. SPIE 8229, Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV, 82290A (2 February 2012); https://doi.org/10.1117/12.906447
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Lymphatic system

Near infrared

Tissues

Imaging systems

Luminescence

In vivo imaging

Diagnostics

Back to Top