Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

PZT piezoelectric films on glass for Gen-X imaging

[+] Author Affiliations
Rudeger H. T. Wilke, Susan Trolier-McKinstry

The Pennsylvania State Univ. (USA)

Paul B. Reid, Daniel A. Schwartz

Harvard-Smithsonian Ctr. for Astrophysics (USA)

Proc. SPIE 7803, Adaptive X-Ray Optics, 78030O (August 26, 2010); doi:10.1117/12.862233
Text Size: A A A
From Conference Volume 7803

  • Adaptive X-Ray Optics
  • Ali M. Khounsary; Stephen L. O'Dell; Sergio R. Restaino
  • San Diego, California, United States | August 01, 2010


The proposed adaptive optics system for the Gen-X telescope uses piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. The low softening transition of the glass substrates imposes several processing challenges that require the development of new approaches to deposit high quality PZT thin films. Synthesis and optimization of chemical solution deposited 1 μm thick films of PbZr0.52Ti0.48O3 on small area (1 in2) and large area (16 in2) Pt/Ti/glass substrates has been performed. In order to avoid warping of the glass at temperatures typically used to crystallize PZT films (~700°C), a lower temperature, two-step crystallization process was employed. An ~80 nm thick seed layer of PbZr0.30Ti0.70O3 was deposited to promote the growth of the perovskite phase. After the deposition of the seed layer, the films were annealed in a rapid thermal annealing (RTA) furnace at 550°C for 3 minutes to nucleate the perovskite phase. This was followed by isothermal annealing at 550°C for 1 hour to complete crystallization. For the subsequent PbZr0.52Ti0.48O3 layers, the same RTA protocol was performed, with the isothermal crystallization implemented following the deposition of three PbZr0.52Ti0.48O3 spin-coated layers. Over the frequency range of 1 kHz to 100 kHz, films exhibit relative permittivity values near 800 with loss tangents below 0.07. Hysteresis loops show low levels of imprint with coercive fields of 40-50 kV/cm in the forward direction and 50-70 kV/cm in the reverse direction. The remanent polarization varied from 25-35 μC/cm2 and e31,f values were approximately -5.0 C/m2. In scaling up the growth procedure to large area films, where warping becomes more pronounced due to the increased size of the substrate, the pyrolysis and crystallization conditions were performed in a box furnace to improve the temperature uniformity. By depositing films on both sides of the glass substrate, the tensile stresses are balanced, providing a sufficiently flat surface to continue PZT deposition. The properties of the large area film are comparable to those obtained on small substrates. While sol-gel processing is a viable approach to the deposition of high quality PZT thin films on glass substrates, preliminary results using RF magnetron sputter deposition demonstrate comparable properties with a significantly simpler process that offers a superior route for large scale production.

© (2010) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Rudeger H. T. Wilke ; Susan Trolier-McKinstry ; Paul B. Reid and Daniel A. Schwartz
"PZT piezoelectric films on glass for Gen-X imaging", Proc. SPIE 7803, Adaptive X-Ray Optics, 78030O (August 26, 2010); doi:10.1117/12.862233; http://dx.doi.org/10.1117/12.862233

Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).



Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.