Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

FEM numerical model study of heating in magnetic nanoparticles

[+] Author Affiliations
John A. Pearce, Jason R. Cook

The Univ. of Texas at Austin (USA)

P. Jack Hoopes

Dartmouth Medical School (USA)

Andrew Giustini

Dartmouth Medical School (USA) and Dartmouth College (USA)

Proc. SPIE 7901, Energy-based Treatment of Tissue and Assessment VI, 79010B (February 22, 2011); doi:10.1117/12.875288
Text Size: A A A
From Conference Volume 7901

  • Energy-based Treatment of Tissue and Assessment VI
  • Thomas P. Ryan
  • San Francisco, California, USA | January 22, 2011

abstract

Electromagnetic heating of nanoparticles is complicated by the extremely short thermal relaxation time constants and difficulty of coupling sufficient power into the particles to achieve desired temperatures. Magnetic field heating by the hysteresis loop mechanism at frequencies between about 100 and 300 kHz has proven to be an effective mechanism in magnetic nanoparticles. Experiments at 2.45 GHz show that Fe3O4 magnetite nanoparticle dispersions in the range of 1012 to 1013 NP/mL also heat substantially at this frequency. An FEM numerical model study was undertaken to estimate the order of magnitude of volume power density, Qgen (W m-3) required to achieve significant heating in evenly dispersed and aggregated clusters of nanoparticles. The FEM models were computed using Comsol Multiphysics; consequently the models were confined to continuum formulations and did not include film nano-dimension heat transfer effects at the nanoparticle surface. As an example, the models indicate that for a single 36 nm diameter particle at an equivalent dispersion of 1013 NP/mL located within one control volume (1.0 x 10-19 m3) of a capillary vessel a power density in the neighborhood of 1017 (W m-3) is required to achieve a steady state particle temperature of 52°C - the total power coupled to the particle is 2.44 μW. As a uniformly distributed particle cluster moves farther from the capillary the required power density decreases markedly. Finally, the tendency for particles in vivo to cluster together at separation distances much less than those of the uniform distribution further reduces the required power density.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

John A. Pearce ; Jason R. Cook ; P. Jack Hoopes and Andrew Giustini
"FEM numerical model study of heating in magnetic nanoparticles", Proc. SPIE 7901, Energy-based Treatment of Tissue and Assessment VI, 79010B (February 22, 2011); doi:10.1117/12.875288; http://dx.doi.org/10.1117/12.875288


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.