Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Hepatic ablation with multiple interstitial ultrasound applicators: initial ex vivo and computational studies

[+] Author Affiliations
Punit Prakash, Vasant A. Salgaonkar, Chris J. Diederich

Univ. of California, San Francisco (USA)

E. Clif Burdette

Acoustic Medsystems, Inc. (USA)

Proc. SPIE 7901, Energy-based Treatment of Tissue and Assessment VI, 79010R (February 23, 2011); doi:10.1117/12.876522
Text Size: A A A
From Conference Volume 7901

  • Energy-based Treatment of Tissue and Assessment VI
  • Thomas P. Ryan
  • San Francisco, California, USA | January 22, 2011

abstract

Radiofrequency (RF) ablation has emerged as an effective method for treating liver tumors under 3 cm in diameter. Multiple applicator devices and techniques - using RF, microwave and other modalities - are under development for thermal ablation of large and irregularly-shaped liver tumors. Interstitial ultrasound (IUS) applicators, comprised of linear arrays of independently powered tubular transducers, enable 3D control of the spatial power deposition profile and simultaneous ablation with multiple applicators. We evaluated IUS applicator configurations (parallel, converging and diverging implants) suitable for percutaneous and laparascopic placement with experiments in ex vivo bovine tissue and computational models. Ex vivo ablation zones measured 4.6±0.5 x 4.2±0.5 × 3.3±0.5 cm3 and 5.6±0.5 × 4.9±0.5 x 2.8±0.3 cm3 using three parallel applicators spaced 2 and 3 cm apart, respectively, and 4.0±0.3 × 3.2±0.4 × 2.9±0.2 cm3 using two parallel applicators spaced 2 cm apart. Computational models indicate in vivo ablation zones up to 4.5 × 4.4 × 5.5 cm3 and 5.7 × 4.8 × 5.2 cm3, using three applicators spaced 2 and 3 cm apart, respectively. Converging and diverging implant patterns can also be employed for conformal ablation of irregularly-shaped tumor margins by tailoring power levels along each device. Simultaneously powered interstitial ultrasound devices can create tailored ablation zones comparable to currently available RF devices and similarly sized microwave antennas.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Punit Prakash ; Vasant A. Salgaonkar ; E. Clif Burdette and Chris J. Diederich
"Hepatic ablation with multiple interstitial ultrasound applicators: initial ex vivo and computational studies", Proc. SPIE 7901, Energy-based Treatment of Tissue and Assessment VI, 79010R (February 23, 2011); doi:10.1117/12.876522; http://dx.doi.org/10.1117/12.876522


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.