Paper
25 March 2013 Investigation of the design parameters of quantum dot enhanced III-V solar cells
Kristina Driscoll, Mitchell Bennett, Stephen Polly, David V. Forbes, Seth M. Hubbard
Author Affiliations +
Abstract
The incorporation of nanostructures, such as quantum dots (QD), into the intrinsic region of III-V solar cells has been proposed as a potential route towards boosting conversion efficiencies with immediate applications in concentrator photovoltaic and space power systems. Necessary to the optimization process of this particular class of solar cells is the ability to correlate nanoscale properties with macroscopic device characteristics. To this purpose, the physics-based software Crosslight APSYS has been developed to investigate the design parameters of QD enhanced solar cells with particular focus on the InAs/GaAs system. This methodology is used to study how nanoscale variables, including size, shape and material compositions, influence photovoltaic performance. In addition, device-level engineering of the nanostructures is explored in optimizing the overall device response. Specifically, the effect of the position of the QDs within the intrinsic regions is investigated. Preliminary simulations suggest strategically placing the QDs off-center reduces non-radiative recombination and thereby the dark saturation current, contributing to a marked increase in opencircuit voltage and fill factor. The short-circuit current remains unchanged in the high field region resulting in an increase in overall conversion efficiency. To further explore this finding, a series of three samples with the QDs placed in the center and near the doped regions of a pin-GaAs solar cell have been grown using MOCVD, fabricated and fully characterized. Contrary to predictions, the emitter-shifted devices exhibit a marked decrease in open-circuit voltage and fill factor. This behavior is attributed to non-negligible n-type background doping in the intrinsic region which shifts the region of maximum recombination towards the p-type emitter.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kristina Driscoll, Mitchell Bennett, Stephen Polly, David V. Forbes, and Seth M. Hubbard "Investigation of the design parameters of quantum dot enhanced III-V solar cells", Proc. SPIE 8620, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices II, 86200L (25 March 2013); https://doi.org/10.1117/12.2005457
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Solar cells

Nanostructures

Quantum dots

Nanostructuring

Doping

Photovoltaics

Absorption

Back to Top