Paper
29 May 2014 Evaluation of turbulence mitigation methods
Author Affiliations +
Abstract
Atmospheric turbulence is a well-known phenomenon that diminishes the recognition range in visual and infrared image sequences. There exist many different methods to compensate for the effects of turbulence. This paper focuses on the performance of two software-based methods to mitigate the effects of low- and medium turbulence conditions. Both methods are capable of processing static and dynamic scenes. The first method consists of local registration, frame selection, blur estimation and deconvolution. The second method consists of local motion compensation, fore- /background segmentation and weighted iterative blind deconvolution. A comparative evaluation using quantitative measures is done on some representative sequences captured during a NATO SET 165 trial in Dayton. The amount of blurring and tilt in the imagery seem to be relevant measures for such an evaluation. It is shown that both methods improve the imagery by reducing the blurring and tilt and therefore enlarge the recognition range. Furthermore, results of a recognition experiment using simulated data are presented that show that turbulence mitigation using the first method improves the recognition range up to 25% for an operational optical system.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Adam W. M. van Eekeren, Claudia S. Huebner, Judith Dijk, Klamer Schutte, and Piet B. W. Schwering "Evaluation of turbulence mitigation methods", Proc. SPIE 9071, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXV, 907113 (29 May 2014); https://doi.org/10.1117/12.2050314
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Turbulence

Cameras

Deconvolution

Image processing

Atmospheric turbulence

Image quality

Image segmentation

Back to Top