Paper
18 July 2014 Robust reflective pupil slicing technology
Jeffrey T. Meade, Bradford B. Behr, Andrew T. Cenko, Arsen R. Hajian
Author Affiliations +
Abstract
Tornado Spectral Systems (TSS) has developed the High Throughput Virtual Slit (HTVSTM), robust all-reflective pupil slicing technology capable of replacing the slit in research-, commercial- and MIL-SPEC-grade spectrometer systems. In the simplest configuration, the HTVS allows optical designers to remove the lossy slit from pointsource spectrometers and widen the input slit of long-slit spectrometers, greatly increasing throughput without loss of spectral resolution or cross-dispersion information. The HTVS works by transferring etendue between image plane axes but operating in the pupil domain rather than at a focal plane. While useful for other technologies, this is especially relevant for spectroscopic applications by performing the same spectral narrowing as a slit without throwing away light on the slit aperture. HTVS can be implemented in all-reflective designs and only requires a small number of reflections for significant spectral resolution enhancement–HTVS systems can be efficiently implemented in most wavelength regions. The etendueshifting operation also provides smooth scaling with input spot/image size without requiring reconfiguration for different targets (such as different seeing disk diameters or different fiber core sizes). Like most slicing technologies, HTVS provides throughput increases of several times without resolution loss over equivalent slitbased designs. HTVS technology enables robust slit replacement in point-source spectrometer systems. By virtue of pupilspace operation this technology has several advantages over comparable image-space slicer technology, including the ability to adapt gracefully and linearly to changing source size and better vertical packing of the flux distribution. Additionally, this technology can be implemented with large slicing factors in both fast and slow beams and can easily scale from large, room-sized spectrometers through to small, telescope-mounted devices. Finally, this same technology is directly applicable to multi-fiber spectrometers to achieve similar enhancement. HTVS also provides the ability to anamorphically “stretch” the slit image in long-slit spectrometers, allowing the instrument designer to optimize the plate scale in the dispersion axis and cross-dispersion axes independently without sacrificing spatial information. This allows users to widen the input slit, with the associated gain of throughput and loss of spatial selectivity, while maintaining the spectral resolution of the spectrometer system. This “stretching” places increased requirements on detector focal plane height, as with image slicing techniques, but provides additional degrees of freedom to instrument designers to build the best possible spectrometer systems. We discuss the details of this technology for an astronomical context, covering the applicability from small telescope mounted spectrometers through long-slit imagers and radial-velocity engines. This powerful tool provides additional degrees of freedom when designing a spectrometer, enabling instrument designers to further optimize systems for the required scientific goals.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jeffrey T. Meade, Bradford B. Behr, Andrew T. Cenko, and Arsen R. Hajian "Robust reflective pupil slicing technology", Proc. SPIE 9151, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation, 91511T (18 July 2014); https://doi.org/10.1117/12.2056949
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Spectroscopy

Spectral resolution

Sensors

Collimation

Astronomy

Diffraction gratings

Telescopes

Back to Top