Paper
12 September 2014 Design of visible light communication system for maintaining uniform data rate
Jiun-Yu Sung, Wan-Feng Lin, Yu-Fu Wu, Chi-Wai Chow, Chien-Hung Yeh
Author Affiliations +
Abstract
Light-emitting diode (LED) is gradually replacing the fluorescent lamp for lighting. Higher modulation bandwidth of LEDs makes the additional application of visible light communication (VLC) possible. Every location of a VLC system should be provided by equal data rate for smooth communication. However, locations away from the LED lamp have less power. These low-power locations have lower signal-to-noise ratio (SNR); and hence lower data rate can be achieved. For achieving high capacity VLC, strategies should be adequately provided to mitigate this problem. Moreover, for some real-time continuous applications, such as video and voice, latency reduction plan should also be considered. In this paper, an orthogonal frequency-division multiplexing access (OFDMA) based system was proposed to solve the above problem. Because we do not use time-division multiplexing access (TDMA) based system, the latency issue can be reduced. The OFDMA based system is also beneficial for large scale operation because the user bandwidth is not reduced by TDM mechanism. Signal-to-noise-plus-interference ratio (SNIR) distribution of the VLC system is designed to ensure uniform and optimal system capacity. Discrete multi-tone (DMT) is used for this VLC system. The DMT subcarriers are bit-loaded depending on the LED frequency response. More subcarriers are allocated for communication at low SNIR locations. Hence, nearly equal data rate can be provided everywhere. Demonstration of 17 Mb/s/LED data rate was provided.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jiun-Yu Sung, Wan-Feng Lin, Yu-Fu Wu, Chi-Wai Chow, and Chien-Hung Yeh "Design of visible light communication system for maintaining uniform data rate", Proc. SPIE 9193, Novel Optical Systems Design and Optimization XVII, 919316 (12 September 2014); https://doi.org/10.1117/12.2060585
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Light emitting diodes

Telecommunications

Strontium

Signal to noise ratio

Data communications

Modulation

Visible radiation

Back to Top