Paper
23 September 2015 Fast evaluation of surface sensitivity on ghost
Author Affiliations +
Abstract
Real optical systems are often suffering from false light caused by ghosts. In particular single reflections are critical in applications like reflected light illumination microscopy or confocal systems. The degradations of performance can be bright spots in the image or contrast, signal to noise or dynamic range reduction. Thus in these systems the suppression of first order reflections is important. State of the art optical design software supports ray trace based ghost image analysis. The automatic generation of reflex light paths is provided, but for systems with a large number of surfaces the analysis of all ghost light paths is time-consuming. Conventional Monte Carlo based non sequential ray trace sums up the reflections of all surfaces simultaneously. To achieve high accuracy a huge number of rays is necessary, what results in long computational time, especially if the distinction of surface influences needs multiple calculations. In this paper a fast method is proposed for the ranking of ghosts. It was developed for single reflections in centered optical systems. For each surface the ghost light path is calculated with paraxial and real ray trace. The ghost diameter and the corresponding illumination NA are calculated. Usually the distance of the reflex focus to the image is used as criterion to access the importance of a ghost. Here we use the power of the ghost ray bundle. It is compared with the signal strength and listed for all surfaces generating a ghost. So in one step a surface contribution of reflex powers as well as an estimation of total flux of reflected light is obtained. Due to the fact, that only a few rays have to be calculated, the method is rather fast. The accuracy can be estimated by comparison of paraxial and marginal ray trace. In the proposed method, some assumptions and approximations are made. They are assessed in respect to some practical examples, and by comparison with full brute force non-sequential ray trace. The usefulness of the fast tool is evaluated.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Beate Boehme "Fast evaluation of surface sensitivity on ghost", Proc. SPIE 9626, Optical Systems Design 2015: Optical Design and Engineering VI, 96260O (23 September 2015); https://doi.org/10.1117/12.2191509
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Ray tracing

Signal attenuation

Reflection

Sensors

Vignetting

Reflectivity

Objectives

Back to Top