Presentation + Paper
15 April 2016 Power source for wireless sensors in pipes
Sherif Keddis, Norbert Schwesinger
Author Affiliations +
Abstract
In this paper, we present investigations on wireless sensors for fluid control inside a pipe. Autarkic sensors are in the technical trend. They are typically connected with a transceiver unit for data transmission. Sensors usually need a lower amount of energy than data transceivers. Therefore, they are commonly supplied via wires or batteries with electricity. With common technologies, this request leads to high requirements on tightness in liquids since poor sealing could easily lead to failures. Replacement of batteries inside pipes is complicated and almost accompanied by a flow interruption. The application of energy harvesters as power supply is therefore a good alternative. In our studies we used flexible piezoelectric energy harvesters of PVDF (Poly-Vinylidene-Di-Fluoride). All harvesting units consist of piezoelectric PVDF-foils as active layers and Aluminum-foils as electrodes. The layers were stacked alternating on each other and wound to a spool. A LDPE-film wraps the spool and prevents the inflow of liquids. The device has following parameters:

  • No. of windings: 4 in air, 4, 5, 7 in water
  • Dimensions: 15 mm Ø 22mm
  • Materials: PDVF: 25μm; Aluminimum: 6μm, LDPE: 25μm
  • A ring shaped bluff body was placed inside the pipe to induce turbulence in the fluid stream. As the harvesters have been arranged downstream of the bluff body, they were forced to oscillate independent of the media. In each case, deformation of the active layers led to a polarization and a separation of electrical charges. Experiments were carried out in a wind channel as well as in a water pipe. In air, the spool oscillates with a frequency of about 30Hz, at a wind speed of about 7m/s. A -Voltage of about 4V (peak-peak) was measured. This delivers in case of power adjustment, power values of about 0.54μW. In water, the velocity of the fluid was limited to nearly one tenth. Oscillation starts only at a water speed above 0.6m/s. The average oscillation frequency is about 18Hz. At a velocity of 0.74m/s, a peak-peak-Voltage up to about 2.3V was found. In case of impedance adjustment, the power was about 0.33μW. This power is stored in a capacitor. Assuming a data transmission unit consumes about 0.2 mWs during one operational period of 1 second, the duty cycle time can be calculated to about 6.2 minutes for air harvesting and 10.1 minutes for harvesting in water.
    Conference Presentation
    © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
    Sherif Keddis and Norbert Schwesinger "Power source for wireless sensors in pipes", Proc. SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016, 979916 (15 April 2016); https://doi.org/10.1117/12.2222416
    Advertisement
    Advertisement
    RIGHTS & PERMISSIONS
    Get copyright permission  Get copyright permission on Copyright Marketplace
    KEYWORDS
    Sensors

    Wind energy

    Ferroelectric polymers

    Water

    Energy harvesting

    Ferroelectric materials

    Resistance

    Back to Top