Paper
26 September 2016 Oxygen-vacancy driven tunnelling spintronics across MgO
U. Halisdemir, F. Schleicher, D. J. Kim, B. Taudul, D. Lacour, W. S. Choi, M. Gallart, S. Boukari, G. Schmerber, V. Davesne, P. Panissod, D. Halley, H. Majjad, Y. Henry, B. Leconte, A. Boulard, D. Spor, N. Beyer, C. Kieber, E. Sternitzky, O. Cregut, M. Ziegler, F. Montaigne, J. Arabski, E. Beaurepaire, W. Jo, M. Alouani, P. Gilliot, M. Hehn, M. Bowen
Author Affiliations +
Abstract
The conservation of an electron’s spin and symmetry as it undergoes solid-state tunnelling within magnetic tunnel junctions (MTJs) is thought to be best understood using MgO-based MTJs1. Yet the very large experimental values of tunnelling magnetoresistance (TMR) that justify this perception are often associated with tunnelling barrier heights well below those suggested by the MgO optical band gap. This combination of high TMR and low RA-product, while spawning spin-transfer/spin-orbit torque experiments and considerable industrial interest, cannot be explained by standard theory. Noting the impact of a tunnel barrier’s altered stoichiometry on TMR2, we reconcile this 10+year-old contradiction between theory and experiment by considering the impact of the MgO barrier’s structural defects3–5. We find that the ground and excited states of oxygen vacancies can promote localized states within the band gap with differing electronic character. By setting symmetry- and temperature-dependent tunnelling barrier heights, they alter symmetry-polarized tunnelling and thus TMR. We will examine how annealing, depending on MgO growth conditions, can alter the nature of these localized states. This oxygen vacancy paradigm of inorganic tunnelling spintronics opens interesting perspectives into endowing the MTJ with additional functionalities, such as optically manipulating the MTJ’s spintronic response.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
U. Halisdemir, F. Schleicher, D. J. Kim, B. Taudul, D. Lacour, W. S. Choi, M. Gallart, S. Boukari, G. Schmerber, V. Davesne, P. Panissod, D. Halley, H. Majjad, Y. Henry, B. Leconte, A. Boulard, D. Spor, N. Beyer, C. Kieber, E. Sternitzky, O. Cregut, M. Ziegler, F. Montaigne, J. Arabski, E. Beaurepaire, W. Jo, M. Alouani, P. Gilliot, M. Hehn, and M. Bowen "Oxygen-vacancy driven tunnelling spintronics across MgO", Proc. SPIE 9931, Spintronics IX, 99310H (26 September 2016); https://doi.org/10.1117/12.2239017
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Oxygen

Spintronics

Spintronics

Luminescence

Electrodes

Electrons

Interfaces

Back to Top