Paper
31 October 2016 In vitro photodynamic inactivation effects of cationic benzylidene cyclopentanone photosensitizers on clinical fluconazole-resistant Candida albicans planktonic cells and biofilms
Author Affiliations +
Abstract
Background: An increasing prevalence of Candida infections has emerged with the wide use of immune-suppressants and antibiotics. Photodynamic inactivation (PDI) as a new approach to treat localized Candida infections is an emerging and promising field nowadays. This study evaluated the efficacy of photodynamic therapy using two new Cationic benzylidene cyclopentanone photosensitizers(P1 and P2) against strains of clinical fluconazole–resistant Candida albicans.

Methods: Suspensions and biofilms of Candida species were incubated with P1 and P2 concentrations (0.25~50 μM) for 30 min followed by 532nm laser irradiation. For planktonic suspensions, viability of cells was assayed by CFU counting. For biofilms, the metabolic activity was evaluated by XTT. Results: In PDI of a planktonic culture of clinical fluconazole–resistant Candida albicans, P2 showed the higher efficacy. After incubation with 25 μM of P2 for 30 min and irradiation with 532nm laser (36 J cm-2), the viability of C. albicans planktonic cells decreased by 3.84 log10. For biofilm cells, a higher light dose of 75 mW cm-2 was necessary to achieve 97.71% metabolic activity reduction.

Conclusions: The results of this investigation demonstrated that benzylidene cyclopentanone photosensitizer(P2)is an efficient photosensitizer to kill C. albicans. Moreover, single-species biofilms were less susceptible to PDT than their planktonic counterparts.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shaona Zhou, Yanyan Fang, Zulin Ye, Ying Wang, Yuxia Zhao, and Ying Gu "In vitro photodynamic inactivation effects of cationic benzylidene cyclopentanone photosensitizers on clinical fluconazole-resistant Candida albicans planktonic cells and biofilms", Proc. SPIE 10024, Optics in Health Care and Biomedical Optics VII, 100241G (31 October 2016); https://doi.org/10.1117/12.2246417
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Picosecond phenomena

Photodynamic therapy

Statistical analysis

In vitro testing

Mode conditioning cables

Luminescence

Chemistry

Back to Top