Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Single-mode 850-nm vertical-cavity surface-emitting lasers with Zn-diffusion and oxide-relief apertures for > 50 Gbit/sec OOK and 4-PAM transmission

[+] Author Affiliations
Jin-Wei Shi

National Central Univ. (Taiwan)

Chia-Chien Wei

National Sun Yat-Sen Univ. (Taiwan)

Jyehong Chen

National Chiao Tung Univ. (Taiwan)

N. N. Ledentsov

VI Systems GmbH (Germany)

Ying-Jay Yang

National Taiwan Univ. (Taiwan)

Proc. SPIE 10122, Vertical-Cavity Surface-Emitting Lasers XXI, 101220F (February 25, 2017); doi:10.1117/12.2256640
Text Size: A A A
From Conference Volume 10122

  • Vertical-Cavity Surface-Emitting Lasers XXI
  • Kent D. Choquette; Chun Lei
  • San Francisco, California, United States | January 28, 2017

abstract

Vertical-cavity surface-emitting lasers (VCSELs) has become the most important light source in the booming market of short-reach (< 300 meters) optical interconnect (OI). The next generation OI has been targeted at 56 Gbit/sec data rate per channel (CEI-56G) with the total data rate up to 400 Gbit/sec. However, the serious modal dispersion of multi-mode fiber (MMF), limited speed of VCSEL, and its high resistance (> 150 Ω) seriously limits the >50 Gbit/sec linking distance (< 10 m) by using only on-off keying (OOK) modulation scheme without any signal processing techniques. In contrast to OOK, 4-PAM modulation format is attractive for >50 Gbit/sec transmission due to that it can save one-half of the required bandwidth. Nevertheless, a 4.7 dB optical power penalty and the linearity of transmitter would become issues in the 4-PAM linking performance. Besides, in the modern OI system, the optics transreceiver module must be packaged as close as possible with the integrated circuits (ICs). The heat generated from ICs will become an issue in speed of VSCEL. Here, we review our recent work about 850 nm VCSEL, which has unique Zn-diffusion/oxide-relief apertures and special p- doping active layer with strong wavelength detuning to further enhance its modulation speed and high-temperature (85°C) performances. Single-mode (SM) devices with high-speed (~26 GHz), reasonable resistance (~70 Ω) and moderate output power (~1.5 mW) can be achieved. Error-free 54 Gbit/sec OOK transmission through 1km MMF has been realized by using such SM device with signal processing techniques. Besides, the volterra nonlinear equalizer has been applied in our 4-PAM 64 Gbit/sec transmission through 2-km OM4 MMF, which significantly enhance the linearity of device and outperforms fed forward equalization (FFE) technique. Record high bit-rate distance product of 128⋅km is confirmed for optical-interconnect applications. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Jin-Wei Shi ; Chia-Chien Wei ; Jyehong Chen ; N. N. Ledentsov and Ying-Jay Yang
" Single-mode 850-nm vertical-cavity surface-emitting lasers with Zn-diffusion and oxide-relief apertures for > 50 Gbit/sec OOK and 4-PAM transmission ", Proc. SPIE 10122, Vertical-Cavity Surface-Emitting Lasers XXI, 101220F (February 25, 2017); doi:10.1117/12.2256640; http://dx.doi.org/10.1117/12.2256640


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.