Presentation
2 May 2017 First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)
Peter B. Noel, Konstantin Willer, Alexander A. Fingerle, Lukas B. Gromann, Fabio De Marco, Kai H. Scherer, Julia Herzen, Klaus Achterhold, Bernhard Gleich, Daniela Münzel, Martin Renz, Bernhard C. Renger, Florian Fischer, Christian Braun, Sigrid Auweter, Katharina Hellbach, Maximilian F. Reiser, Tobias Schröter, Jürgen Mohr, Andre Yaroshenko, Hanns-Ingo Maack, Thomas Pralow, Hendrik van der Heijden, Roland Proksa, Thomas Köhler, Nataly Wieberneit, Karsten Rindt, Ernst J. Rummeny, Franz Pfeiffer
Author Affiliations +
Abstract
Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Peter B. Noel, Konstantin Willer, Alexander A. Fingerle, Lukas B. Gromann, Fabio De Marco, Kai H. Scherer, Julia Herzen, Klaus Achterhold, Bernhard Gleich, Daniela Münzel, Martin Renz, Bernhard C. Renger, Florian Fischer, Christian Braun, Sigrid Auweter, Katharina Hellbach, Maximilian F. Reiser, Tobias Schröter, Jürgen Mohr, Andre Yaroshenko, Hanns-Ingo Maack, Thomas Pralow, Hendrik van der Heijden, Roland Proksa, Thomas Köhler, Nataly Wieberneit, Karsten Rindt, Ernst J. Rummeny, and Franz Pfeiffer "First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)", Proc. SPIE 10132, Medical Imaging 2017: Physics of Medical Imaging, 1013215 (2 May 2017); https://doi.org/10.1117/12.2255596
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
KEYWORDS
X-rays

Radiography

X-ray imaging

Chest imaging

Lung

Tissues

Chest

Back to Top