Presentation
10 May 2017 Preliminary results on the fatigue life characterization of a styrenic dielectric elastomer (Conference Presentation)
Author Affiliations +
Abstract
Recently, a styrenic rubber membrane (commercialized under the name of “THERABAND YELLOW 11726”) demonstrated excellent electromechanical properties for the development of high power density and highly efficient dielectric elastomer transducers (DETs). In particular, in an experimental application as generator, an inflated circular diaphragm DET based on this material made it possible to consistently convert pneumatic energy into electricity at a maximum energy density per cycle and power density greater than 400 J/kg and 650 W/kg, respectively, with even higher numbers being expected for DETs configured so as to have the material working in uniform states of deformation. As for any other existing dielectric elastomer material, these experimented performances can however be sustained for a limited number of cycles only, after which the DET will fail irreversibly. To date, very little information is available on the fatigue life performances of dielectric elastomer materials and of the transducers made thereof. Having identified the electrical breakdown as the most probable mode of DET failure, this paper reports for the first time on a set of lifetime constant-electric-stress tests conducted on the considered styrenic dielectric elastomer membrane. Specifically, the paper starts with a description of the employed experimental set-up and procedures. Then, it summarizes the obtained experimental results. Finally, it concludes with a discussion on how the acquired data could be used in a design procedure to find optimal tradeoffs between DET performance and lifetime/reliability.
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yi Chen, Rocco Vertechy, and Marco Fontana "Preliminary results on the fatigue life characterization of a styrenic dielectric elastomer (Conference Presentation)", Proc. SPIE 10163, Electroactive Polymer Actuators and Devices (EAPAD) 2017, 101630F (10 May 2017); https://doi.org/10.1117/12.2260158
Advertisement
Advertisement
KEYWORDS
Dielectrics

Electrical breakdown

Transducers

Data acquisition

Actuators

Current controlled current source

Electroactive polymers

Back to Top