Paper
26 June 2017 Development of graphene process control by industrial optical spectroscopy setup
O. Fursenko, M. Lukosius, G. Lupina, J. Bauer, C. Villringer, A. Mai
Author Affiliations +
Abstract
The successful integration of graphene into microelectronic devices depends strongly on the availability of fast and nondestructive characterization methods of graphene grown by CVD on large diameter production wafers [1-3] which are in the interest of the semiconductor industry. Here, a high-throughput optical metrology method for measuring the thickness and uniformity of large-area graphene sheets is demonstrated. The method is based on the combination of spectroscopic ellipsometry and normal incidence reflectometry in UV-Vis wavelength range (200-800 nm) with small light spots (~ 30 μm2) realized in wafer optical metrology tool. In the first step graphene layers were transferred on a SiO2/Si substrate in order to determine the optical constants of graphene by the combination of multi-angle ellipsometry and reflectometry. Then these data were used for the development of a process control recipe of CVD graphene on 200 mm Ge(100)/Si(100) wafers. The graphene layer quality was additionally monitored by Raman spectroscopy. Atomic force microscopy measurements were performed for micro topography evaluation. In consequence, a robust recipe for unambiguous thickness monitoring of all components of a multilayer film stack, including graphene, surface residuals or interface layer underneath graphene and surface roughness is developed. Optical monitoring of graphene thickness uniformity over a wafer has shown an excellent long term stability (s=0.004 nm) regardless of the growth of interfacial GeO2 and surface roughness. The sensitivity of the optical identification of graphene during microelectronic processing was evaluated.

This optical metrology technique with combined data collection exhibit a fast and highly precise method allowing one an unambiguous detection of graphene after transferring as well as after the CVD deposition process on a Ge(100)/Si(100) wafer. This approach is well suited for industrial applications due to its repeatability and flexibility.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
O. Fursenko, M. Lukosius, G. Lupina, J. Bauer, C. Villringer, and A. Mai "Development of graphene process control by industrial optical spectroscopy setup", Proc. SPIE 10330, Modeling Aspects in Optical Metrology VI, 1033017 (26 June 2017); https://doi.org/10.1117/12.2269603
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Graphene

Semiconducting wafers

Process control

Chemical vapor deposition

Optical metrology

Optical spectroscopy

Microelectronics

Back to Top