Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Hyperthermic tissue sealing devices: a proposed histopathologic protocol for standardizing the evaluation of thermally sealed vessels

[+] Author Affiliations
Ryan H. Livengood, Jeffrey A. Vos, James E. Coad

West Virginia Univ. (USA)

Proc. SPIE 7901, Energy-based Treatment of Tissue and Assessment VI, 79010Y (February 22, 2011); doi:10.1117/12.876861
Text Size: A A A
From Conference Volume 7901

  • Energy-based Treatment of Tissue and Assessment VI
  • Thomas P. Ryan
  • San Francisco, California, USA | January 22, 2011

abstract

Hyperthermic tissue sealing devices are advancing modern laparoscopy and other minimally invasive surgical approaches. Histopathologic evaluation of thermally sealed vessels can provide important information on their associated tissue effects and reactions. However, a standardized systematic approach has not been historically used in the literature. This paper proposes a histologic approach for the analysis of thermally sealed vessels and their basis of hemostasis, including thermal tissue changes, healing, and thrombosis. Histologic evaluation during the first week (Days 3-7) can assess the seal's primary tissue properties. These parameters include the thermal seal's length, architecture, tissue layers involved, adventitial collagen denaturation length, entrapped vapor or blood pockets, tissue homogenization and thermal tissue injury zones. While the architectural features can be assessed in Day 0-3 specimens, the latter thermal injury zones are essentially not assessable in Day 0-3 specimens. Day 14 specimens can provide information on the early healing response to the sealed vessel. Day 30 and longer specimens can be used to evaluate the seal's healing reactions. Assessment of the healing response should include seal site inflammation, granulation tissue, necrosis resorption, fibroproliferative scar healing, and thrombus organization. In order to accurately evaluate these parameters, careful specimen orientation, embedding and multiple histologic sections across the entire seal width are required. When appropriate in vivo post-treatment times are used, thermal vessel seals can be evaluated with routine light microscopy and common histologic staining methods.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Ryan H. Livengood ; Jeffrey A. Vos and James E. Coad
"Hyperthermic tissue sealing devices: a proposed histopathologic protocol for standardizing the evaluation of thermally sealed vessels", Proc. SPIE 7901, Energy-based Treatment of Tissue and Assessment VI, 79010Y (February 22, 2011); doi:10.1117/12.876861; http://dx.doi.org/10.1117/12.876861


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.