Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Theoretical studies of floating-reference method for NIR blood glucose sensing

[+] Author Affiliations
Zhenzhi Shi, Yue Yang, Huijuan Zhao, Wenliang Chen, Rong Liu, Kexin Xu

Tianjin Univ. (China)

Proc. SPIE 7906, Optical Diagnostics and Sensing XI: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue III, 79060W (February 10, 2011); doi:10.1117/12.872271
Text Size: A A A
From Conference Volume 7906

  • Optical Diagnostics and Sensing XI: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue III
  • Robert J. Nordstrom; Gerard L. Coté
  • San Francisco, California, USA | January 22, 2011

abstract

Non-invasive blood glucose monitoring using NIR light has been suffered from the variety of optical background that is mainly caused by the change of human body, such as the change of temperature, water concentration, and so on. In order to eliminate these internal influence and external interference a so called floating-reference method has been proposed to provide an internal reference. From the analysis of the diffuse reflectance spectrum, a position has been found where diffuse reflection of light is not sensitive to the glucose concentrations. Our previous work has proved the existence of reference position using diffusion equation. However, since glucose monitoring generally use the NIR light in region of 1000-2000nm, diffusion equation is not valid because of the high absorption coefficient and small source-detector separations. In this paper, steady-state high-order approximate model is used to further investigate the existence of the floating reference position in semi-infinite medium. Based on the analysis of different optical parameters on the impact of spatially resolved reflectance of light, we find that the existence of the floating-reference position is the result of the interaction of optical parameters. Comparing to the results of Monte Carlo simulation, the applicable region of diffusion approximation and higher-order approximation for the calculation of floating-reference position is discussed at the wavelength of 1000nm-1800nm, using the intralipid solution of different concentrations. The results indicate that when the reduced albedo is greater than 0.93, diffusion approximation results are more close to simulation results, otherwise the high order approximation is more applicable.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Zhenzhi Shi ; Yue Yang ; Huijuan Zhao ; Wenliang Chen ; Rong Liu, et al.
"Theoretical studies of floating-reference method for NIR blood glucose sensing", Proc. SPIE 7906, Optical Diagnostics and Sensing XI: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue III, 79060W (February 10, 2011); doi:10.1117/12.872271; http://dx.doi.org/10.1117/12.872271


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.