Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

An investigation of the effect of in vivo interferences on Raman glucose measurements

[+] Author Affiliations
Bongchu Shim, Hyunho Oh, Jeankun Oh, Yongju Yang, Yunhee Ku, Moosub Kim, Dami Kim, Hyejin Eum, Seongmoon Cho, David R. Miller

LG Electronics Inc. (Korea, Republic of)

Proc. SPIE 7906, Optical Diagnostics and Sensing XI: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue III, 79060Z (February 10, 2011); doi:10.1117/12.873676
Text Size: A A A
From Conference Volume 7906

  • Optical Diagnostics and Sensing XI: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue III
  • Robert J. Nordstrom; Gerard L. Coté
  • San Francisco, California, USA | January 22, 2011

abstract

Raman spectroscopy is a promising technology for noninvasive blood glucose monitoring because of its good selectivity for the glucose molecule. The low sensitivity of the Raman signal however, makes it difficult to quantify the concentration of glucose directly from the Raman spectra. To solve this, statistical methods such as PCA (principle component analysis) and PLS (partial least square) are traditionally used. These statistical methods general work very well and give highly accurate results, provided there is no interference. In the in-vivo case however, there are many interferences such as the inhomogeneity of tissue, physiological changes, and denaturation of the tissue by the light source. This study investigates the affect of in-vivo interferences on Raman glucose measurements. In this study, a high throughput dispersive Raman system was constructed with an 830nm multimode laser, a multiple conductor optical fiber bundle, and a back-illuminated CCD spectrometer. A simply phantom was devised, which was comprised of a plastic cuvette fitted with a human fingernail window and glucose doped human serum used as the sample. To test the inhomogeneity of tissue samples, different sites of the phantom were exposed to the laser. In the case of denaturation, tests were conducted under two laser power densities: low (3.7mW/mm2) and high density (110mW/mm2). To simulate the physiological change, gelatin phantoms of varied concentration were investigated. The results of the study indicate that the dominant interferers for Raman in-vivo glucose measurements are the inhomogeneity of the tissue and the denaturation by the laser power density. The next phase for this study will be the design of a high SNR Raman system which affords a low power density laser sample illumination as well as larger volumetric illumination to mitigate the effects of tissue inhomogeneity.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Bongchu Shim ; Hyunho Oh ; Jeankun Oh ; Yongju Yang ; Yunhee Ku, et al.
"An investigation of the effect of in vivo interferences on Raman glucose measurements", Proc. SPIE 7906, Optical Diagnostics and Sensing XI: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue III, 79060Z (February 10, 2011); doi:10.1117/12.873676; http://dx.doi.org/10.1117/12.873676


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.