Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

The role of cellular environment in dynamic light scattering

[+] Author Affiliations
Ran An, John Turek, David Nolte

Purdue Univ. (USA)

Kwan Jeong

Purdue Univ. (USA) and Korea Military Academy (Korea, Republic of)

Proc. SPIE 7907, Biomedical Applications of Light Scattering V, 79070E (February 11, 2011); doi:10.1117/12.874855
Text Size: A A A
From Conference Volume 7907

  • Biomedical Applications of Light Scattering V
  • Adam P. Wax; Vadim Backman
  • San Francisco, California, USA | January 22, 2011

abstract

We have developed motility contrast imaging (MCI) as a coherence-domain volumetric imaging approach that uses subcellular dynamics as an endogenous imaging contrast agent of living tissue. Fluctuation spectroscopy analysis of dynamic light scattering (DLS) from 3-D tissue has identified functional frequency bands related to organelle transport, membrane undulations and cell shape change. In this paper, we track the behavior of dynamic light scattering as we bridge the gap between the two extremes of 2-D cell culture on the one hand, and 3-D tissue spheroids on the other. In a light backscattering geometry, we capture speckle from 2-D cell culture consisting of isolated cells or planar rafts of cells on cell-culture surfaces. DLS from that cell culture shows differences and lower sensitivity to intra-cellular dynamics compared with the 3-D tissue. The motility contrast is weak in this limit. As the cellular density increases to cover the surface, the motility contrast increases. As environmental perturbations or pharmaceuticals are applied, the fluctuation spectral response becomes more dramatic as the dimensionality of the cellular aggregations increases. We show that changing optical thickness of the cellular-to-tissue targets usually causes characteristic frequency shifts in the spectrograms, while changing cellular dimensionality causes characteristic frequencies to be enhanced or suppressed.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Ran An ; Kwan Jeong ; John Turek and David Nolte
"The role of cellular environment in dynamic light scattering", Proc. SPIE 7907, Biomedical Applications of Light Scattering V, 79070E (February 11, 2011); doi:10.1117/12.874855; http://dx.doi.org/10.1117/12.874855


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.