Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Magnetomotive molecular probes for targeted contrast enhancement and therapy

[+] Author Affiliations
Stephen A. Boppart

Univ. of Illinois at Urbana-Champaign (USA)

Proc. SPIE 7910, Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications III, 791004 (February 11, 2011); doi:10.1117/12.873862
Text Size: A A A
From Conference Volume 7910

  • Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications III
  • Samuel Achilefu; Ramesh Raghavachari
  • San Francisco, California, USA | January 22, 2011

abstract

The diagnostic, interrogational, and therapeutic potential of molecular probes is rapidly being investigated and exploited across virtually every biomedical imaging modality. While many types of probes enhance contrast or delivery therapy by static localization to targeted sites, significant potential exists for utilizing dynamic molecular probes. Recent examples include molecular beacons, photoactivatable probes, or controlled switchable drug-releasing particles, to name a few. In this review, we describe a novel class of dynamic molecular probes that rely on the application and control of localized external magnetic fields. These magnetomotive molecular probes can provide optical image contrast through a modulated scattering signal, can interrogate the biomechanical properties of their viscoelastic microenvironment by tracking their underdamped oscillatory step-response to applied fields, and can potentially delivery therapy through nanometer-to-micrometer mechanical displacement or local hyperthermia. This class of magnetomotive agents includes not only magnetic iron-oxide nanoparticles, but also new magnetomotive microspheres or nanostructures with embedded iron-oxide agents. In vitro three-dimensional cell assays and in vivo targeting studies in animal tumor models have demonstrated the potential for multimodal detection and imaging, using magnetic resonance imaging for whole-body localization, and magnetomotive optical coherence tomography for high-resolution localization and imaging.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Stephen A. Boppart
"Magnetomotive molecular probes for targeted contrast enhancement and therapy", Proc. SPIE 7910, Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications III, 791004 (February 11, 2011); doi:10.1117/12.873862; http://dx.doi.org/10.1117/12.873862


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Advertisement


 

  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.