Full Content is available to subscribers

Subscribe/Learn More  >
Proceedings Article

Surface plasmon resonance biosensing via differential spectral phase interferometry

[+] Author Affiliations
Siu-Pang Ng, Chi-Man Lawrence Wu

City Univ. of Hong Kong (Hong Kong, China)

Shu-Yuen Wu, Ho-Pui Ho, Siu-Kai Kong

The Chinese Univ. of Hong Kong (Hong Kong, China)

Proc. SPIE 7911, Plasmonics in Biology and Medicine VIII, 79110C (February 11, 2011); doi:10.1117/12.874108
Text Size: A A A
From Conference Volume 7911

  • Plasmonics in Biology and Medicine VIII
  • Tuan Vo-Dinh; Joseph R. Lakowicz
  • San Francisco, California, USA | January 22, 2011

abstract

A novel surface plasmon resonance (SPR) sensor based on differential spectral phase interferometry is introduced. Our scheme incorporates a broadband white-light emitting diode (WLED) with double-pass Michelson interferometer for highly sensitive Kretschmann SPR phase detection over the visible spectrum. Superior to laser based SPR interferometer which is vulnerable to nonlinear phase saturation and conventional spectroscopic SPR sensor which only measures the spectral intensity, the proposed spectral phase interferometer directly acquires the optimal SPR phase response of every spectral component which is equivalent to having infinitely many SPR laser interferometers operating simultaneously at fixed angle of incidence. Therefore the inherent phase saturation problem due to monochromatic laser source could be readily addressed. As the result, our system prevail over existing phase detection schemes by (1) achieving comparable ultimate detection limit as good as 10-7 refractive index unit (RIU), (2) extending the phase measurement range as far as 10-2 RIU, (3) simplifying the phase modulation scheme by directly acquiring the spectral oscillation instead of adding a temporal carrier. Experimental verification with BSA-aBSA interaction demonstrates that our system is capable of achieving ultimate sensitivity of 0.5ng·ml-1 (3.3pM) for ultra-sensitive aBSA detection which is among the best reported in literature. Yet such sensitivity is extended over a wide range of measurement as each wavelength specific SPR phase jump is monitored over the entire visible spectrum. Further biosensing application such as detection of cytochrome-c with aptamer immobilized on the SPR sensing surface is currently under investigation. We believe that by combination of high sensitivity, wide dynamic range and simplicity of operation, our SPR system would be truly applicable to complicated real-life biosensing.

© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Citation

Siu-Pang Ng ; Chi-Man Lawrence Wu ; Shu-Yuen Wu ; Ho-Pui Ho and Siu-Kai Kong
"Surface plasmon resonance biosensing via differential spectral phase interferometry", Proc. SPIE 7911, Plasmonics in Biology and Medicine VIII, 79110C (February 11, 2011); doi:10.1117/12.874108; http://dx.doi.org/10.1117/12.874108


Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).

Figures

Tables

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement

 

 

  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Proceeding
Sign in or Create a personal account to Buy this proceeding ($15 for members, $18 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.